Entity-Specific Cyber Risk Assessment using InsurTech Empowered Risk Factors
- URL: http://arxiv.org/abs/2507.08193v2
- Date: Mon, 14 Jul 2025 22:21:11 GMT
- Title: Entity-Specific Cyber Risk Assessment using InsurTech Empowered Risk Factors
- Authors: Jiayi Guo, Zhiyu Quan, Linfeng Zhang,
- Abstract summary: We develop a novel InsurTech framework that enriches cyber incident data with entity-specific attributes.<n>We apply multiple interpretable ML techniques to identify and cross-validate potential risk factors.<n>The framework generates transparent, entity-specific cyber risk profiles, supporting customized underwriting and proactive cyber risk mitigation.
- Score: 12.0472507787498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The lack of high-quality public cyber incident data limits empirical research and predictive modeling for cyber risk assessment. This challenge persists due to the reluctance of companies to disclose incidents that could damage their reputation or investor confidence. Therefore, from an actuarial perspective, potential resolutions conclude two aspects: the enhancement of existing cyber incident datasets and the implementation of advanced modeling techniques to optimize the use of the available data. A review of existing data-driven methods highlights a significant lack of entity-specific organizational features in publicly available datasets. To address this gap, we propose a novel InsurTech framework that enriches cyber incident data with entity-specific attributes. We develop various machine learning (ML) models: a multilabel classification model to predict the occurrence of cyber incident types (e.g., Privacy Violation, Data Breach, Fraud and Extortion, IT Error, and Others) and a multioutput regression model to estimate their annual frequencies. While classifier and regressor chains are implemented to explore dependencies among cyber incident types as well, no significant correlations are observed in our datasets. Besides, we apply multiple interpretable ML techniques to identify and cross-validate potential risk factors developed by InsurTech across ML models. We find that InsurTech empowered features enhance prediction occurrence and frequency estimation robustness compared to only using conventional risk factors. The framework generates transparent, entity-specific cyber risk profiles, supporting customized underwriting and proactive cyber risk mitigation. It provides insurers and organizations with data-driven insights to support decision-making and compliance planning.
Related papers
- Rethinking Data Protection in the (Generative) Artificial Intelligence Era [115.71019708491386]
We propose a four-level taxonomy that captures the diverse protection needs arising in modern (generative) AI models and systems.<n>Our framework offers a structured understanding of the trade-offs between data utility and control, spanning the entire AI pipeline.
arXiv Detail & Related papers (2025-07-03T02:45:51Z) - A Survey on Autonomy-Induced Security Risks in Large Model-Based Agents [45.53643260046778]
Recent advances in large language models (LLMs) have catalyzed the rise of autonomous AI agents.<n>These large-model agents mark a paradigm shift from static inference systems to interactive, memory-augmented entities.
arXiv Detail & Related papers (2025-06-30T13:34:34Z) - Towards Safety and Security Testing of Cyberphysical Power Systems by Shape Validation [42.350737545269105]
complexity of cyberphysical power systems leads to larger attack surfaces to be exploited by malicious actors.<n>We propose to meet those risks with a declarative approach to describe cyber power systems and automatically evaluate security and safety controls.
arXiv Detail & Related papers (2025-06-14T12:07:44Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Modeling Interdependent Cybersecurity Threats Using Bayesian Networks: A Case Study on In-Vehicle Infotainment Systems [0.0]
This paper reviews the application of Bayesian Networks (BNs) in cybersecurity risk modeling.<n>A case study is presented in which a STRIDE-based attack tree for an automotive In-Vehicle Infotainment (IVI) system is transformed into a BN.
arXiv Detail & Related papers (2025-05-14T01:04:45Z) - Cyber Risk Taxonomies: Statistical Analysis of Cybersecurity Risk Classifications [0.0]
We argue in favour of switching the attention from goodness-of-fit and in-sample performance, to focusing on the out-of sample forecasting performance.
Our results indicate that business motivated cyber risk classifications appear to be too restrictive and not flexible enough to capture the heterogeneity of cyber risk events.
arXiv Detail & Related papers (2024-10-04T04:12:34Z) - Certifiably Byzantine-Robust Federated Conformal Prediction [49.23374238798428]
We introduce a novel framework Rob-FCP, which executes robust federated conformal prediction effectively countering malicious clients.
We empirically demonstrate the robustness of Rob-FCP against diverse proportions of malicious clients under a variety of Byzantine attacks.
arXiv Detail & Related papers (2024-06-04T04:43:30Z) - A Data-Driven Predictive Analysis on Cyber Security Threats with Key Risk Factors [1.715270928578365]
This paper exhibits a Machine Learning(ML) based model for predicting individuals who may be victims of cyber attacks by analyzing socioeconomic factors.
We propose a novel Pertinent Features Random Forest (RF) model, which achieved maximum accuracy with 20 features (95.95%)
We generated 10 important association rules and presented the framework that is rigorously evaluated on real-world datasets.
arXiv Detail & Related papers (2024-03-28T09:41:24Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - A robust statistical framework for cyber-vulnerability prioritisation under partial information in threat intelligence [0.0]
This work introduces a robust statistical framework for quantitative and qualitative reasoning under uncertainty about cyber-vulnerabilities.
We identify a novel accuracy measure suited for rank in variance under partial knowledge of the whole set of existing vulnerabilities.
We discuss the implications of partial knowledge about cyber-vulnerabilities on threat intelligence and decision-making in operational scenarios.
arXiv Detail & Related papers (2023-02-16T15:05:43Z) - Statistical Modeling of Data Breach Risks: Time to Identification and
Notification [2.132096006921048]
We propose a novel approach to imputing the missing data, and further develop a dependence model to capture the complex pattern exhibited by those two metrics.
The empirical study shows that the proposed approach has a satisfactory predictive performance and is superior to other commonly used models.
arXiv Detail & Related papers (2022-09-15T14:08:23Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.