論文の概要: Reasoning and Behavioral Equilibria in LLM-Nash Games: From Mindsets to Actions
- arxiv url: http://arxiv.org/abs/2507.08208v1
- Date: Thu, 10 Jul 2025 22:43:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.196614
- Title: Reasoning and Behavioral Equilibria in LLM-Nash Games: From Mindsets to Actions
- Title(参考訳): LLM-Nashゲームにおける推論と行動平衡:マインドセットから行動へ
- Authors: Quanyan Zhu,
- Abstract要約: LLM-Nashフレームワークは、エージェントが大言語モデル(LLM)を介して意思決定をガイドする推論プロンプトを選択するゲーム理論モデルである。
効用最大化エージェントを完全合理性で仮定する古典ゲームとは異なり、このフレームワークは推論過程を明示的にモデル化することによって有界合理性を取得する。
- 参考スコア(独自算出の注目度): 15.764094200832071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the LLM-Nash framework, a game-theoretic model where agents select reasoning prompts to guide decision-making via Large Language Models (LLMs). Unlike classical games that assume utility-maximizing agents with full rationality, this framework captures bounded rationality by modeling the reasoning process explicitly. Equilibrium is defined over the prompt space, with actions emerging as the behavioral output of LLM inference. This approach enables the study of cognitive constraints, mindset expressiveness, and epistemic learning. Through illustrative examples, we show how reasoning equilibria can diverge from classical Nash outcomes, offering a new foundation for strategic interaction in LLM-enabled systems.
- Abstract(参考訳): LLM-Nashフレームワークはエージェントが大言語モデル(LLM)を介して意思決定をガイドする推論プロンプトを選択するゲーム理論モデルである。
効用最大化エージェントを完全合理性で仮定する古典ゲームとは異なり、このフレームワークは推論過程を明示的にモデル化することによって有界合理性を取得する。
平衡はプロンプト空間上で定義され、LCM推論の行動出力として現れる。
このアプローチは、認知的制約、マインドセット表現性、およびてんかん学習の研究を可能にする。
実証的な例を通して、推論平衡が古典的なナッシュ結果からどのように分岐するかを示し、LLM対応システムにおける戦略的相互作用の新たな基盤を提供する。
関連論文リスト
- Feedback-Induced Performance Decline in LLM-Based Decision-Making [6.5990946334144756]
大規模言語モデル(LLM)は、自然言語の問題記述からコンテキストを抽出することができる。
本稿では,マルコフ決定過程(MDP)におけるこれらのモデルの挙動について考察する。
論文 参考訳(メタデータ) (2025-07-20T10:38:56Z) - Sound and Complete Neurosymbolic Reasoning with LLM-Grounded Interpretations [7.81820080453498]
大規模言語モデル(LLM)は、自然言語の理解と生成において印象的な能力を示している。
パラ一貫性論理に対する形式的意味論の解釈関数に LLM を直接統合する手法を提案する。
論文 参考訳(メタデータ) (2025-07-13T19:05:43Z) - LLM-Stackelberg Games: Conjectural Reasoning Equilibria and Their Applications to Spearphishing [15.764094200832071]
本稿では,大規模言語モデル(LLM)を戦略的相互作用に統合する逐次意思決定モデルの枠組みを紹介する。
LLM-Stackelbergゲームは,サイバーセキュリティや誤情報,レコメンデーションシステムといった領域において,意思決定をモデル化するための強力なパラダイムを提供する。
論文 参考訳(メタデータ) (2025-07-12T21:42:27Z) - KORGym: A Dynamic Game Platform for LLM Reasoning Evaluation [78.96590724864606]
我々はKOR-BenchとGymnasiumに触発された動的評価プラットフォームであるKORGym(Knowledge Orthogonal Reasoning Gymnasium)を紹介する。
KORGymはテキストまたはビジュアル形式で50以上のゲームを提供し、強化学習シナリオによるインタラクティブでマルチターンアセスメントをサポートする。
論文 参考訳(メタデータ) (2025-05-20T16:06:32Z) - Guiding Reasoning in Small Language Models with LLM Assistance [23.3038074903744]
小さな言語モデルは、深く、多段階の論理的推論を必要とするタスクに適していると疑念を抱いた。
本稿では,Small Reasons, Large Hintsというフレームワークについて紹介する。
数学的推論データセットを用いた実験により, ターゲットとなる外部足場の性能が著しく向上することが示された。
論文 参考訳(メタデータ) (2025-04-14T06:32:45Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - Investigating the Zone of Proximal Development of Language Models for In-Context Learning [59.91708683601029]
大規模言語モデル(LLM)の文脈内学習(ICL)の振る舞いを分析するための学習分析フレームワークを提案する。
我々は,各例のモデル性能に基づいて,LLMのZPDを測定することにより,ZPD理論をICLに適用する。
本研究はICLの複雑な多面的動作を明らかにし,この手法の理解と活用に関する新たな知見を提供する。
論文 参考訳(メタデータ) (2025-02-10T19:36:21Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
大規模言語モデル(LLM)は、様々な領域にまたがる顕著な推論能力を示している。
近年の研究では、テスト時間計算の増加はLLMの推論能力を高めることが示されている。
そこで我々は,1)COAT推論形式を内部化するための小規模な形式調整段階,2)強化学習を活用した大規模自己改善段階を提案する。
論文 参考訳(メタデータ) (2025-02-04T17:26:58Z) - Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
世界の知識と論理的推論の相互作用について検討する。
最先端の大規模言語モデル(LLM)は、しばしば表面的な一般化に依存している。
タスクの単純な再構成により、より堅牢な推論行動が引き起こされることを示す。
論文 参考訳(メタデータ) (2024-10-31T12:48:58Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - K-Level Reasoning: Establishing Higher Order Beliefs in Large Language Models for Strategic Reasoning [76.3114831562989]
マルチエージェント環境で戦略を動的に適応させるためには、LLM(Large Language Model)エージェントが必要である。
我々は,「K-Level Reasoning with Large Language Models (K-R)」という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T16:07:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。