論文の概要: Sound and Complete Neurosymbolic Reasoning with LLM-Grounded Interpretations
- arxiv url: http://arxiv.org/abs/2507.09751v2
- Date: Fri, 01 Aug 2025 16:30:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 14:06:53.481209
- Title: Sound and Complete Neurosymbolic Reasoning with LLM-Grounded Interpretations
- Title(参考訳): LLM-Grounded Interpretations を用いた音響・完全ニューロシンボリック推論
- Authors: Bradley P. Allen, Prateek Chhikara, Thomas Macaulay Ferguson, Filip Ilievski, Paul Groth,
- Abstract要約: 大規模言語モデル(LLM)は、自然言語の理解と生成において印象的な能力を示している。
パラ一貫性論理に対する形式的意味論の解釈関数に LLM を直接統合する手法を提案する。
- 参考スコア(独自算出の注目度): 7.81820080453498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but they exhibit problems with logical consistency in the output they generate. How can we harness LLMs' broad-coverage parametric knowledge in formal reasoning despite their inconsistency? We present a method for directly integrating an LLM into the interpretation function of the formal semantics for a paraconsistent logic. We provide experimental evidence for the feasibility of the method by evaluating the function using datasets created from several short-form factuality benchmarks. Unlike prior work, our method offers a theoretical framework for neurosymbolic reasoning that leverages an LLM's knowledge while preserving the underlying logic's soundness and completeness properties.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語の理解と生成において印象的な能力を示してきたが、それらが生成する出力の論理的一貫性に問題がある。
LLMの広い範囲のパラメトリック知識は,矛盾にもかかわらず形式的推論にどのように活用できるのか?
パラ一貫性論理に対する形式的意味論の解釈関数に LLM を直接統合する手法を提案する。
提案手法の有効性を示す実験的な証拠として,いくつかの短文事実性ベンチマークから作成したデータセットを用いて,本手法の有効性を検証した。
従来の研究とは違って,本手法はLLMの知識を生かし,基礎となる論理の健全性と完全性を保ちながら,神経象徴的推論の理論的枠組みを提供する。
関連論文リスト
- Enhancing Large Language Models through Neuro-Symbolic Integration and Ontological Reasoning [0.0]
大規模言語モデル(LLM)は自然言語処理において顕著な能力を示すが、幻覚として知られる不正確さと論理的不整合に悩まされている。
本稿では,LLM出力の一貫性と信頼性を高めるために,記号的存在論的推論と機械学習を融合したニューロシンボリックアプローチを提案する。
論文 参考訳(メタデータ) (2025-04-10T10:39:24Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
本稿では、類似推論のための制御された評価環境を導入することにより、探索的アプローチを採用する。
帰納的,帰納的,帰納的,帰納的な推論パイプラインの比較力学を解析する。
仮説選択や検証,洗練といった高度なパラダイムを考察し,論理的推論のスケールアップの可能性を明らかにする。
論文 参考訳(メタデータ) (2025-02-16T15:54:53Z) - Evaluating the Correctness of Inference Patterns Used by LLMs for Judgment [53.17596274334017]
我々は,LLMの詳細な推論パターンの正確さを,その正しい出力の裏側で評価した。
実験により、言語生成結果が正しそうであっても、LLMが法的な判断に用いた推論パターンのかなりの部分は、誤解を招く論理や無関係な論理を表す可能性があることが示された。
論文 参考訳(メタデータ) (2024-10-06T08:33:39Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、一貫性のない推論に苦戦している。
本研究では,LLM出力の信頼性と透明性を高めるフレームワークであるProof of Thoughtを紹介する。
主な貢献は、論理的整合性を高めるためのソート管理を備えた堅牢な型システム、事実的知識と推論的知識を明確に区別するための規則の明示である。
論文 参考訳(メタデータ) (2024-09-25T18:35:45Z) - Inductive Learning of Logical Theories with LLMs: An Expressivity-Graded Analysis [9.865771016218549]
本研究は,Large Language Models(LLM)の機能と限界を分析するための,新しい体系的方法論を提案する。
この分析は、LLM性能に関する特定の推論課題の定量化を可能にする、複雑性グレードのw.r.t.ルール依存構造である。
論文 参考訳(メタデータ) (2024-08-15T16:41:00Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - FaithLM: Towards Faithful Explanations for Large Language Models [67.29893340289779]
大きな言語モデル(LLM)は、内部知識と推論能力を活用することで複雑なタスクに対処するのに熟練している。
これらのモデルのブラックボックスの性質は、意思決定プロセスを説明するタスクを複雑にしている。
自然言語 (NL) による LLM の決定を説明するために FaithLM を紹介した。
論文 参考訳(メタデータ) (2024-02-07T09:09:14Z) - Enhancing Ethical Explanations of Large Language Models through
Iterative Symbolic Refinement [5.108863224378874]
本稿では,ハイブリッド・ニューロシンボリック・テクニックが倫理的説明の論理的妥当性とアライメントをいかに向上させるかを検討する。
本稿では,大規模言語モデルと外部の後方鎖型ソルバを統合した導出型フレームワーク Logic-Explainer を提案する。
経験的分析により、Logic-Explainerは、コンテキスト内学習法とChain-of-Thoughtを通じて生成された説明を改善することができることを示した。
論文 参考訳(メタデータ) (2024-02-01T16:39:51Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
大規模言語モデル(LLM)は、最近数学的な能力において大きな可能性を証明している。
LLMは現在、認識、言語理解、推論能力のブリッジングに困難を抱えている。
本稿では, LLMを帰納学習フレームワークに統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T16:23:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。