論文の概要: InsightBuild: LLM-Powered Causal Reasoning in Smart Building Systems
- arxiv url: http://arxiv.org/abs/2507.08235v1
- Date: Fri, 11 Jul 2025 00:45:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.208514
- Title: InsightBuild: LLM-Powered Causal Reasoning in Smart Building Systems
- Title(参考訳): InsightBuild: LLMを利用したスマートビルディングシステムにおける因果推論
- Authors: Pinaki Prasad Guha Neogi, Ahmad Mohammadshirazi, Rajiv Ramnath,
- Abstract要約: エネルギー消費パターンの因果的説明を提供するために,因果解析を微調整大言語モデル(LLM)と統合する2段階フレームワークを提案する。
LLMに基づく自然言語生成と明確な因果発見を組み合わせれば、明確で正確な説明が得られます。
- 参考スコア(独自算出の注目度): 1.3654846342364306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart buildings generate vast streams of sensor and control data, but facility managers often lack clear explanations for anomalous energy usage. We propose InsightBuild, a two-stage framework that integrates causality analysis with a fine-tuned large language model (LLM) to provide human-readable, causal explanations of energy consumption patterns. First, a lightweight causal inference module applies Granger causality tests and structural causal discovery on building telemetry (e.g., temperature, HVAC settings, occupancy) drawn from Google Smart Buildings and Berkeley Office datasets. Next, an LLM, fine-tuned on aligned pairs of sensor-level causes and textual explanations, receives as input the detected causal relations and generates concise, actionable explanations. We evaluate InsightBuild on two real-world datasets (Google: 2017-2022; Berkeley: 2018-2020), using expert-annotated ground-truth causes for a held-out set of anomalies. Our results demonstrate that combining explicit causal discovery with LLM-based natural language generation yields clear, precise explanations that assist facility managers in diagnosing and mitigating energy inefficiencies.
- Abstract(参考訳): スマートなビルは大量のセンサーと制御データを生成するが、施設管理者は異常なエネルギー使用に関する明確な説明を欠いていることが多い。
エネルギー消費パターンの人間可読で因果的な説明を提供するために,因果解析と微調整された大言語モデル(LLM)を統合する2段階のフレームワークであるInsightBuildを提案する。
まず、軽量な因果推論モジュールが、Google Smart BuildingsとBerkeley Officeのデータセットから得られたテレメトリ(例えば、温度、HVAC設定、占有率)を構築する上で、Granger因果性テストと構造因果検出を適用します。
次に、センサーレベルの原因とテキストによる説明のペアを微調整したLCMが、検出された因果関係を入力として受信し、簡潔で実用的な説明を生成する。
InsightBuildを2つの実世界のデータセット(Google: 2017-2022、バークレー: 2018-2020)で評価する。
以上の結果から, LLMに基づく自然言語生成と明確な因果発見を組み合わせれば, 施設管理者によるエネルギー不効率の診断・緩和を支援する, 明確かつ正確な説明が得られることが示唆された。
関連論文リスト
- Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
因果表現学習を大規模言語モデルと統合する枠組みを提案する。
このフレームワークは、自然言語表現に関連付けられた因果変数を持つ因果世界モデルを学ぶ。
本研究では,時間的スケールと環境の複雑さを考慮した因果推論と計画課題の枠組みを評価する。
論文 参考訳(メタデータ) (2024-10-25T18:36:37Z) - CausalGraph2LLM: Evaluating LLMs for Causal Queries [49.337170619608145]
CausalGraph2LLMは、さまざまな因果グラフ設定にまたがる700万以上のクエリからなるベンチマークである。
この領域ではLSMは有望であるが, 使用するエンコーディングに非常に敏感であることがわかった。
論文 参考訳(メタデータ) (2024-10-21T12:12:21Z) - Counterfactual Causal Inference in Natural Language with Large Language Models [9.153187514369849]
本稿では,自然言語からの因果構造発見と因果推論手法を提案する。
まず LLM を用いてテキストデータからインスタンス化された因果変数を抽出し,因果グラフを構築する。
次に、推定されたグラフに対して反実数推論を行う。
論文 参考訳(メタデータ) (2024-10-08T21:53:07Z) - Large Language Models for Constrained-Based Causal Discovery [4.858756226945995]
因果関係は経済、脳、気候といった複雑なシステムを理解するのに不可欠である。
この研究は、因果グラフ生成のためのドメインエキスパートの代替として、LLM(Large Language Models)の能力を探求する。
論文 参考訳(メタデータ) (2024-06-11T15:45:24Z) - Is the House Ready For Sleeptime? Generating and Evaluating Situational Queries for Embodied Question Answering [48.43453390717167]
本研究では,家庭環境における状況問合せ(S-EQA)による身体的質問回答の課題を提示し,解決する。
以前のEQAの作業とは異なり、状況的クエリでは、エージェントが複数のオブジェクト状態を正しく識別し、回答のために状態に関するコンセンサスに到達する必要がある。
本稿では, LLMの出力をラップして, 独自のコンセンサスクエリとそれに対応するコンセンサスオブジェクト情報を生成する新しいPrompt-Generate-Evaluateスキームを提案する。
論文 参考訳(メタデータ) (2024-05-08T00:45:20Z) - Cause and Effect: Can Large Language Models Truly Understand Causality? [1.2334534968968969]
本研究では,CARE CA(Content Aware Reasoning Enhancement with Counterfactual Analysis)フレームワークという新しいアーキテクチャを提案する。
提案するフレームワークには,ConceptNetと反ファクト文を備えた明示的な因果検出モジュールと,大規模言語モデルによる暗黙的な因果検出が組み込まれている。
ConceptNetの知識は、因果的発見、因果的識別、反事実的推論といった複数の因果的推論タスクのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:02:14Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
本稿では,大きな言語モデル(LLM)を導入してギャップを埋めるCausal representatiOn AssistanT(COAT)を提案する。
LLMは世界中の大規模な観測に基づいて訓練されており、構造化されていないデータから重要な情報を抽出する優れた能力を示している。
COATはまた、特定変数間の因果関係を見つけるためにCDを採用し、提案された要因を反復的に洗練するためにLSMにフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - LLM4Causal: Democratized Causal Tools for Everyone via Large Language Model [7.052058110182703]
大きな言語モデル(LLM)は、言語理解と一般的なトピックの推論で成功していることを示している。
LLMをLLM4Causalに微調整することで、因果タスクを識別し、対応する関数を実行し、ユーザのクエリと提供されたデータセットに基づいてその数値結果を解釈できる可能性を探る。
論文 参考訳(メタデータ) (2023-12-28T16:59:06Z) - CLadder: Assessing Causal Reasoning in Language Models [82.8719238178569]
我々は,大言語モデル (LLM) が因果関係をコヒーレントに説明できるかどうかを検討する。
ユデア・パールらによって仮定された「因果推論エンジン」にインスパイアされた、自然言語における因果推論という新たなNLPタスクを提案する。
論文 参考訳(メタデータ) (2023-12-07T15:12:12Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Can Large Language Models Infer Causation from Correlation? [104.96351414570239]
大規模言語モデル(LLM)の純粋因果推論スキルをテストする。
相関文の集合を取り、変数間の因果関係を決定する新しいタスクCorr2Causeを定式化する。
これらのモデルがタスクのランダムな性能にほぼ近い結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-09T12:09:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。