論文の概要: Exploring Design of Multi-Agent LLM Dialogues for Research Ideation
- arxiv url: http://arxiv.org/abs/2507.08350v1
- Date: Fri, 11 Jul 2025 06:53:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.265296
- Title: Exploring Design of Multi-Agent LLM Dialogues for Research Ideation
- Title(参考訳): 研究思想のための多言語LLM対話の探索
- Authors: Keisuke Ueda, Wataru Hirota, Takuto Asakura, Takahiro Omi, Kosuke Takahashi, Kosuke Arima, Tatsuya Ishigaki,
- Abstract要約: 大規模言語モデル(LLM)は、研究アイデア生成のような創造的なタスクをサポートするために、ますます使われている。
エージェントの役割の異なる構成、エージェントの数、対話深度を比較し、これらの要因が生成したアイデアの新規性と実現可能性にどのように影響するかを理解する。
- 参考スコア(独自算出の注目度): 4.561804070932164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly used to support creative tasks such as research idea generation. While recent work has shown that structured dialogues between LLMs can improve the novelty and feasibility of generated ideas, the optimal design of such interactions remains unclear. In this study, we conduct a comprehensive analysis of multi-agent LLM dialogues for scientific ideation. We compare different configurations of agent roles, number of agents, and dialogue depth to understand how these factors influence the novelty and feasibility of generated ideas. Our experimental setup includes settings where one agent generates ideas and another critiques them, enabling iterative improvement. Our results show that enlarging the agent cohort, deepening the interaction depth, and broadening agent persona heterogeneity each enrich the diversity of generated ideas. Moreover, specifically increasing critic-side diversity within the ideation-critique-revision loop further boosts the feasibility of the final proposals. Our findings offer practical guidelines for building effective multi-agent LLM systems for scientific ideation. Our code is available at https://github.com/g6000/MultiAgent-Research-Ideator.
- Abstract(参考訳): 大規模言語モデル(LLM)は、研究アイデア生成のような創造的なタスクをサポートするために、ますます使われている。
近年の研究では、LLM間の構造化された対話が生成したアイデアの新規性と実現可能性を改善することが示されているが、そのような相互作用の最適設計はいまだ不明である。
本研究では,科学的思考のための多エージェントLPM対話を包括的に分析する。
エージェントの役割の異なる構成、エージェントの数、対話深度を比較し、これらの要因が生成したアイデアの新規性と実現可能性にどのように影響するかを理解する。
実験的な設定には、あるエージェントがアイデアを生成し、別のエージェントがそれらを批判し、反復的な改善を可能にする設定が含まれています。
その結果, エージェントコホートの拡大, 相互作用深さの深化, エージェントペルソナの不均一性の拡大が, 生成したアイデアの多様性を豊かにすることがわかった。
さらに、概念批判・修正ループにおける批判側の多様性の増大は、最終的な提案の実現可能性をさらに高める。
本研究は,科学的思考に有効なマルチエージェントLLMシステム構築のための実践的ガイドラインを提供する。
私たちのコードはhttps://github.com/g6000/MultiAgent-Research-Ideator.comで公開されています。
関連論文リスト
- Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
Reinforced Meta-thinking Agents (ReMA) を導入し,Large Language Models (LLMs) の推論からメタ思考行動を求める。
ReMAは、推論プロセスを2つの階層的なエージェントに分解する。戦略上の監視と計画を生成するハイレベルなメタ思考エージェントと、詳細な実行のための低レベルな推論エージェントである。
単ターン実験による実験結果から、ReMAは複雑な推論タスクにおいて単エージェントRLベースラインよりも優れることが示された。
論文 参考訳(メタデータ) (2025-03-12T16:05:31Z) - Enhancing LLM Reasoning with Multi-Path Collaborative Reactive and Reflection agents [26.645038049346255]
マルチパス推論(Multi-Path Reasoning:RR-MP)フレームワークを用いたリアクティブおよびリフレクションエージェントを提案する。
提案手法は,マルチパス推論機構を用いて科学的推論精度を向上させる。
道徳的シナリオ,大学レベルの物理,数学に関わる課題について,ゼロショットと少数ショットの評価を行った。
論文 参考訳(メタデータ) (2024-12-31T13:11:20Z) - LLM Discussion: Enhancing the Creativity of Large Language Models via Discussion Framework and Role-Play [43.55248812883912]
大規模言語モデル(LLM)は自然言語処理において例外的な習熟度を示してきたが、しばしばオープンエンドの質問に対する創造的で独創的な応答を生成できない。
LLM議論は,アイデア交換の活発化と多様化を促進する3段階の議論フレームワークである。
提案手法の有効性を, 代替利用テスト, 類似性テスト, インスタンステスト, 科学的創造性テストを用いて評価した。
論文 参考訳(メタデータ) (2024-05-10T10:19:14Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgentは、新しい作品のアイデアと運用のためのAIベースのシステムである。
ResearchAgentは、新しい問題を自動で定義し、手法と設計実験を提案し、繰り返し修正する。
我々は、複数の分野にわたる科学論文に関するResearchAgentを実験的に検証した。
論文 参考訳(メタデータ) (2024-04-11T13:36:29Z) - Large Multimodal Agents: A Survey [78.81459893884737]
大規模言語モデル(LLM)は、テキストベースのAIエージェントのパワーで優れたパフォーマンスを実現している。
LLMを利用したAIエージェントをマルチモーダルドメインに拡張することに焦点を当てた、新たな研究トレンドがある。
本総説は, この急速に発展する分野において, 今後の研究に有用な洞察とガイドラインを提供することを目的としている。
論文 参考訳(メタデータ) (2024-02-23T06:04:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。