Learning to Measure Quantum Neural Networks
- URL: http://arxiv.org/abs/2501.05663v1
- Date: Fri, 10 Jan 2025 02:28:19 GMT
- Title: Learning to Measure Quantum Neural Networks
- Authors: Samuel Yen-Chi Chen, Huan-Hsin Tseng, Hsin-Yi Lin, Shinjae Yoo,
- Abstract summary: We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable.<n>Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters.<n>Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes.
- Score: 10.617463958884528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress in quantum computing (QC) and machine learning (ML) has attracted growing attention, prompting extensive research into quantum machine learning (QML) algorithms to solve diverse and complex problems. Designing high-performance QML models demands expert-level proficiency, which remains a significant obstacle to the broader adoption of QML. A few major hurdles include crafting effective data encoding techniques and parameterized quantum circuits, both of which are crucial to the performance of QML models. Additionally, the measurement phase is frequently overlooked-most current QML models rely on pre-defined measurement protocols that often fail to account for the specific problem being addressed. We introduce a novel approach that makes the observable of the quantum system-specifically, the Hermitian matrix-learnable. Our method features an end-to-end differentiable learning framework, where the parameterized observable is trained alongside the ordinary quantum circuit parameters simultaneously. Using numerical simulations, we show that the proposed method can identify observables for variational quantum circuits that lead to improved outcomes, such as higher classification accuracy, thereby boosting the overall performance of QML models.
Related papers
- Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
We propose a diffusion-based algorithm leveraging the LayerDAG framework to generate new quantum circuits.
Our results demonstrate that the proposed model consistently generates 100% valid quantum circuit outputs.
arXiv Detail & Related papers (2025-04-29T14:10:10Z) - Evolutionary Optimization for Designing Variational Quantum Circuits with High Model Capacity [3.6881738506505988]
The design of high-performance quantum machine learning (QML) models requires expert-level knowledge.<n>Key challenges include the design of data encoding mechanisms and parameterized quantum circuits.<n>We propose a novel method that encodes quantum circuit architecture information to enable the evolution of quantum circuit designs.
arXiv Detail & Related papers (2024-12-17T02:40:35Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Machine Learning Architecture Search via Deep Reinforcement Learning [8.546707309430593]
We introduce deep reinforcement learning to explore proficient QML model architectures tailored for supervised learning tasks.
Our methodology involves training an RL agent to devise policies that facilitate the discovery of QML models without predetermined ansatz.
Our proposed method successfully identifies VQC architectures capable of achieving high classification accuracy while minimizing gate depth.
arXiv Detail & Related papers (2024-07-29T16:20:51Z) - Challenges for Reinforcement Learning in Quantum Circuit Design [8.894627352356302]
Hybrid quantum machine learning (QML) comprises both the application of QC to improve machine learning (ML) and ML to improve QC architectures.
We propose qcd-gym, a concrete framework formalized as a Markov decision process, to enable learning policies capable of controlling a universal set of continuously parameterized quantum gates.
arXiv Detail & Related papers (2023-12-18T16:41:30Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
We implement methods for the efficient preparation of quantum states representing encoded image data using variational, genetic and matrix product state based algorithms.
Results show that these methods can approximately prepare states to a level suitable for QML using circuits two orders of magnitude shallower than a standard state preparation implementation.
arXiv Detail & Related papers (2023-09-18T01:49:36Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.