RTNinja: a generalized machine learning framework for analyzing random telegraph noise signals in nanoelectronic devices
- URL: http://arxiv.org/abs/2507.08424v1
- Date: Fri, 11 Jul 2025 09:09:01 GMT
- Title: RTNinja: a generalized machine learning framework for analyzing random telegraph noise signals in nanoelectronic devices
- Authors: Anirudh Varanasi, Robin Degraeve, Philippe Roussel, Clement Merckling,
- Abstract summary: RTNinja is a fully automated machine learning framework for the unsupervised analysis of random telegraph noise signals.<n>To evaluate performance, we developed a Monte Carlo simulator that generates labeled datasets spanning broad signal-to-noise ratios and source complexities.<n>Our results demonstrate that RTNinja offers a robust, scalable, and device-agnostic tool for random telegraph noise characterization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random telegraph noise is a prevalent variability phenomenon in nanoelectronic devices, arising from stochastic carrier exchange at defect sites and critically impacting device reliability and performance. Conventional analysis techniques often rely on restrictive assumptions or manual interventions, limiting their applicability to complex, noisy datasets. Here, we introduce RTNinja, a generalized, fully automated machine learning framework for the unsupervised analysis of random telegraph noise signals. RTNinja deconvolves complex signals to identify the number and characteristics of hidden individual sources, without requiring prior knowledge of the system. The framework comprises two modular components: LevelsExtractor, which uses Bayesian inference and model selection to denoise and discretize the signal; and SourcesMapper, which infers source configurations through probabilistic clustering and optimization. To evaluate performance, we developed a Monte Carlo simulator that generates labeled datasets spanning broad signal-to-noise ratios and source complexities; across 7000 such datasets, RTNinja consistently demonstrated high-fidelity signal reconstruction and accurate extraction of source amplitudes and activity patterns. Our results demonstrate that RTNinja offers a robust, scalable, and device-agnostic tool for random telegraph noise characterization, enabling large-scale statistical benchmarking, reliability-centric technology qualification, predictive failure modeling, and device physics exploration in next-generation nanoelectronics.
Related papers
- A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
This paper presents a hybrid framework that integrates both statistical feature selection and classification techniques to improve defect detection accuracy.<n>We present around 55 distinguished features that are extracted from industrial images, which are then analyzed using statistical methods.<n>By integrating these methods with flexible machine learning applications, the proposed framework improves detection accuracy and reduces false positives and misclassifications.
arXiv Detail & Related papers (2024-12-11T22:12:21Z) - Scintillation pulse characterization with spectrum-inspired temporal neural networks: case studies on particle detector signals [1.124958340749622]
We propose a network architecture specially tailored for scintillation pulse characterization based on previous works on time series analysis.<n>We prove our idea in two case studies: (a) simulation data generated with the setting of the LUX dark matter detector, and (b) experimental electrical signals with fast electronics to emulate scintillation variations for the NICA/MPD calorimeter.
arXiv Detail & Related papers (2024-10-09T02:44:53Z) - Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization [42.14439854721613]
Jamming devices disrupt signals from the global navigation satellite system (GNSS)<n>This paper introduces an extensive dataset comprising snapshots obtained from a low-frequency antenna.<n>Our objective is to assess the resilience of machine learning (ML) models against environmental changes.
arXiv Detail & Related papers (2024-09-23T15:20:33Z) - Neuromorphic Split Computing with Wake-Up Radios: Architecture and Design via Digital Twinning [97.99077847606624]
This work proposes a novel architecture that integrates a wake-up radio mechanism within a split computing system consisting of remote, wirelessly connected, NPUs.
A key challenge in the design of a wake-up radio-based neuromorphic split computing system is the selection of thresholds for sensing, wake-up signal detection, and decision making.
arXiv Detail & Related papers (2024-04-02T10:19:04Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
A novel joint sensing, communication, and artificial intelligence (AI) framework is proposed so as to optimize extended reality (XR) experiences over terahertz (THz) wireless systems.
arXiv Detail & Related papers (2023-04-29T00:39:50Z) - Structural Vibration Signal Denoising Using Stacking Ensemble of Hybrid
CNN-RNN [0.0]
In recent years, there has been a growing trend towards the use of vibration signals in the field of bioengineering.
Footstep-induced vibrations are useful for analyzing the movement of biological systems such as the human body and animals.
In this paper, we propose a novel ensemble model that leverages both the ensemble of multiple signals and of recurrent and convolutional neural network predictions.
arXiv Detail & Related papers (2023-03-11T00:49:45Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
We present novel weakly-supervised approaches to anomaly detection for industrial settings.
The approaches make use of a Digital Twin to generate a training dataset which simulates the normal operation of the machinery.
The performance of the proposed methods is compared against various state-of-the-art anomaly detection algorithms on an application to a real-world dataset.
arXiv Detail & Related papers (2020-11-12T10:15:56Z) - Frequency-based Multi Task learning With Attention Mechanism for Fault
Detection In Power Systems [6.4332733596587115]
We introduce a novel deep learning-based approach for fault detection and test it on a real data set, namely, the Kaggle platform for a partial discharge detection task.
Our solution adopts a Long-Short Term Memory architecture with attention mechanism to extract time series features, and uses a 1D-Convolutional Neural Network structure to exploit frequency information of the signal for prediction.
arXiv Detail & Related papers (2020-09-15T02:01:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.