論文の概要: xpSHACL: Explainable SHACL Validation using Retrieval-Augmented Generation and Large Language Models
- arxiv url: http://arxiv.org/abs/2507.08432v1
- Date: Fri, 11 Jul 2025 09:18:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.302537
- Title: xpSHACL: Explainable SHACL Validation using Retrieval-Augmented Generation and Large Language Models
- Title(参考訳): xpSHACL:Retrieval-Augmented GenerationとLarge Language Modelを用いた説明可能なSHACL検証
- Authors: Gustavo Correa Publio, José Emilio Labra Gayo,
- Abstract要約: Shapes Constraint Language (SHACL)はRDFデータを検証するための強力な言語である。
本稿では,説明可能なSHACL検証システムであるXPSHACLについて述べる。
ルールベースの正当化木と検索強化世代(RAG)と大規模言語モデル(LLM)を組み合わせて、制約違反の詳細な多言語説明を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Shapes Constraint Language (SHACL) is a powerful language for validating RDF data. Given the recent industry attention to Knowledge Graphs (KGs), more users need to validate linked data properly. However, traditional SHACL validation engines often provide terse reports in English that are difficult for non-technical users to interpret and act upon. This paper presents xpSHACL, an explainable SHACL validation system that addresses this issue by combining rule-based justification trees with retrieval-augmented generation (RAG) and large language models (LLMs) to produce detailed, multilanguage, human-readable explanations for constraint violations. A key feature of xpSHACL is its usage of a Violation KG to cache and reuse explanations, improving efficiency and consistency.
- Abstract(参考訳): Shapes Constraint Language (SHACL)はRDFデータを検証するための強力な言語である。
近年のKG(Knowledge Graphs)業界の動向を踏まえると、より多くのユーザがリンクしたデータを適切に検証する必要がある。
しかし、従来のSHACL検証エンジンは、非技術者が解釈し実行することを困難にしている英語で簡潔なレポートを提供することが多い。
本稿では,ルールベースの正当性木と検索拡張生成(RAG)と大規模言語モデル(LLM)を組み合わせることで,制約違反に関する詳細な多言語・人間可読な説明を生成することで,この問題に対処する説明可能なSHACL検証システムであるxpSHACLを提案する。
xpSHACLの重要な特徴は、説明のキャッシュと再利用にViolation KGを使用し、効率と一貫性を改善していることである。
関連論文リスト
- SHACL Validation under Graph Updates (Extended Paper) [6.755812289103844]
本稿では,RDFグラフの直感的かつ現実的な修正をキャプチャできるSHACLベースの更新言語を提案する。
この問題は、与えられた更新シーケンスを適用した後も、SHACL仕様を検証するすべてのグラフがまだそうするかどうかを検証するように要求する。
静的な検証は(マイナーな拡張)SHACLにおける制約の満足度に還元できることを示す。
論文 参考訳(メタデータ) (2025-07-31T19:58:16Z) - Towards Operationalizing Right to Data Protection [8.61230665736263]
RegTextは、認識不能な相関関係を自然言語データセットに注入するフレームワークで、コンテンツに影響を与えることなく、効果的に学習不能にすることができる。
小型・大規模LMの厳密な実証分析によりRegTextの有用性を実証する。
RegTextは、生成したデータからGPT-4oやLlamaといった新しいモデルを学ぶことができます。
論文 参考訳(メタデータ) (2024-11-13T10:43:31Z) - Complex Reasoning over Logical Queries on Commonsense Knowledge Graphs [61.796960984541464]
論理クエリをサンプリングして作成した新しいデータセットであるCOM2(COMplex COMmonsense)を提示する。
我々は、手書きのルールと大きな言語モデルを用いて、複数の選択とテキスト生成の質問に言語化します。
COM2でトレーニングされた言語モデルでは、複雑な推論能力が大幅に改善されている。
論文 参考訳(メタデータ) (2024-03-12T08:13:52Z) - ConstraintChecker: A Plugin for Large Language Models to Reason on
Commonsense Knowledge Bases [53.29427395419317]
コモンセンス知識ベース(CSKB)に対する推論は,新しいコモンセンス知識を取得する方法として検討されてきた。
我々は**ConstraintChecker*を提案します。
論文 参考訳(メタデータ) (2024-01-25T08:03:38Z) - ChatRule: Mining Logical Rules with Large Language Models for Knowledge
Graph Reasoning [107.61997887260056]
そこで我々は,知識グラフ上の論理ルールをマイニングするための大規模言語モデルの力を解き放つ新しいフレームワークChatRuleを提案する。
具体的には、このフレームワークは、KGのセマンティック情報と構造情報の両方を活用するLLMベースのルールジェネレータで開始される。
生成されたルールを洗練させるために、ルールランキングモジュールは、既存のKGから事実を取り入れてルール品質を推定する。
論文 参考訳(メタデータ) (2023-09-04T11:38:02Z) - Grounded Keys-to-Text Generation: Towards Factual Open-Ended Generation [92.1582872870226]
そこで我々は,新しい接地型キー・ツー・テキスト生成タスクを提案する。
タスクは、ガイドキーと接地パスのセットが与えられたエンティティに関する事実記述を生成することである。
近年のQAに基づく評価手法に着想を得て,生成した記述の事実的正当性を示す自動計量MAFEを提案する。
論文 参考訳(メタデータ) (2022-12-04T23:59:41Z) - Error-Robust Retrieval for Chinese Spelling Check [43.56073620728942]
Chinese Spelling Check (CSC)は、中国のコンテキストにおけるエラートークンの検出と修正を目的としている。
これまでの方法では、既存のデータセットを完全に活用できない場合がある。
そこで我々は,中国語スペルチェックのための誤り情報付きプラグ・アンド・プレイ検索手法を提案する。
論文 参考訳(メタデータ) (2022-11-15T01:55:34Z) - CORE: A Retrieve-then-Edit Framework for Counterfactual Data Generation [91.16551253297588]
Counterfactual Generation via Retrieval and Editing (CORE) は、トレーニングのための多様な反事実摂動を生成するための検索強化された生成フレームワークである。
COREはまず、学習されたバイエンコーダを用いて、タスク関連未ラベルテキストコーパス上で密集した検索を行う。
COREはこれらを、反ファクト編集のために、数ショットの学習機能を備えた大規模な言語モデルへのプロンプトに組み込む。
論文 参考訳(メタデータ) (2022-10-10T17:45:38Z) - A Review of SHACL: From Data Validation to Schema Reasoning for RDF
Graphs [3.274290296343038]
本稿では,RDFデータ検証のためのW3Cレコメンデーション言語であるShapes Constraint Language (SHACL)の紹介とレビューを行う。
SHACL文書はRDFノード上の一連の制約を記述しており、ノードがこれらの制約を満たす場合、グラフは文書に対して有効である。
論文 参考訳(メタデータ) (2021-12-02T17:28:45Z) - GATE: Graph Attention Transformer Encoder for Cross-lingual Relation and
Event Extraction [107.8262586956778]
言語に依存しない文表現を学習するために、普遍的な依存解析を伴うグラフ畳み込みネットワーク(GCN)を導入する。
GCNは、長い範囲の依存関係を持つ単語をモデル化するのに苦労する。
そこで本研究では,構文的距離の異なる単語間の依存関係を学習するための自己認識機構を提案する。
論文 参考訳(メタデータ) (2020-10-06T20:30:35Z) - SHACL Satisfiability and Containment (Extended Paper) [6.308539010172308]
Shapes Constraint Language (SHACL)は、RDFデータを検証するための最近のW3C勧告言語である。
本稿では、SCLと呼ばれる新しい一階述語言語への翻訳を提供することにより、再帰的でないSHACLの異なる特徴を徹底的に研究する。
この論理学におけるSHACLの特徴の相互作用について検討し、上記のSHACLサブ言語に対する決定問題の決定可能性と複雑性の詳細なマップを提供する。
論文 参考訳(メタデータ) (2020-08-31T14:52:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。