KGRAG-Ex: Explainable Retrieval-Augmented Generation with Knowledge Graph-based Perturbations
- URL: http://arxiv.org/abs/2507.08443v1
- Date: Fri, 11 Jul 2025 09:35:13 GMT
- Title: KGRAG-Ex: Explainable Retrieval-Augmented Generation with Knowledge Graph-based Perturbations
- Authors: Georgios Balanos, Evangelos Chasanis, Konstantinos Skianis, Evaggelia Pitoura,
- Abstract summary: Knowledge graphs (KGs) offer a solution by introducing structured, semantically rich representations of entities and their relationships.<n>We present KGRAG-Ex, a RAG system that improves both factual grounding and explainability by leveraging a domain-specific KG.<n>Given a user query, KGRAG-Ex identifies relevant entities and semantic paths in the graph, which are then transformed into pseudo-paragraphs.
- Score: 2.287415292857565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) enhances language models by grounding responses in external information, yet explainability remains a critical challenge, particularly when retrieval relies on unstructured text. Knowledge graphs (KGs) offer a solution by introducing structured, semantically rich representations of entities and their relationships, enabling transparent retrieval paths and interpretable reasoning. In this work, we present KGRAG-Ex, a RAG system that improves both factual grounding and explainability by leveraging a domain-specific KG constructed via prompt-based information extraction. Given a user query, KGRAG-Ex identifies relevant entities and semantic paths in the graph, which are then transformed into pseudo-paragraphs: natural language representations of graph substructures that guide corpus retrieval. To improve interpretability and support reasoning transparency, we incorporate perturbation-based explanation methods that assess the influence of specific KG-derived components on the generated answers. We conduct a series of experiments to analyze the sensitivity of the system to different perturbation methods, the relationship between graph component importance and their structural positions, the influence of semantic node types, and how graph metrics correspond to the influence of components within the explanations process.
Related papers
- Talking to GDELT Through Knowledge Graphs [0.6153162958674417]
We study various Retrieval Augmented Regeneration (RAG) approaches to gain an understanding of the strengths and weaknesses of each approach in a question-answering analysis.<n>To retrieve information from the text corpus we implement a traditional vector store RAG as well as state-of-the-art large language model (LLM) based approaches.
arXiv Detail & Related papers (2025-03-10T17:48:10Z) - G-Refer: Graph Retrieval-Augmented Large Language Model for Explainable Recommendation [48.23263809469786]
We propose a framework using graph retrieval-augmented large language models (LLMs) for explainable recommendation.<n>G-Refer achieves superior performance compared with existing methods in both explainability and stability.
arXiv Detail & Related papers (2025-02-18T06:42:38Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - Query-Enhanced Adaptive Semantic Path Reasoning for Inductive Knowledge Graph Completion [45.9995456784049]
This paper proposes the Query-Enhanced Adaptive Semantic Path Reasoning (QASPR) framework.
QASPR captures both the structural and semantic information of KGs to enhance the inductive KGC task.
experimental results demonstrate that QASPR achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-06-04T11:02:15Z) - GraphEdit: Large Language Models for Graph Structure Learning [14.16155596597421]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.<n>Existing GSL methods heavily depend on explicit graph structural information as supervision signals.<n>We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - Knowledge Graphs and Pre-trained Language Models enhanced Representation Learning for Conversational Recommender Systems [58.561904356651276]
We introduce the Knowledge-Enhanced Entity Representation Learning (KERL) framework to improve the semantic understanding of entities for Conversational recommender systems.
KERL uses a knowledge graph and a pre-trained language model to improve the semantic understanding of entities.
KERL achieves state-of-the-art results in both recommendation and response generation tasks.
arXiv Detail & Related papers (2023-12-18T06:41:23Z) - KG-ECO: Knowledge Graph Enhanced Entity Correction for Query Rewriting [15.243664083941287]
In this work, we propose KG-ECO: Knowledge Graph enhanced Entity COrrection for query rewriting.
To boost the model performance, we incorporate Knowledge Graph (KG) to provide entity structural information.
Experimental results show that our approach yields a clear performance gain over two baselines.
arXiv Detail & Related papers (2023-02-21T05:42:06Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
We study the intrinsic difficulty in graph classification under the unified concept of resolution dilemmas''
We propose SLIM'', an inductive neural network model for Structural Landmarking and Interaction Modelling.
arXiv Detail & Related papers (2020-06-29T01:01:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.