Query-Enhanced Adaptive Semantic Path Reasoning for Inductive Knowledge Graph Completion
- URL: http://arxiv.org/abs/2406.02205v1
- Date: Tue, 4 Jun 2024 11:02:15 GMT
- Title: Query-Enhanced Adaptive Semantic Path Reasoning for Inductive Knowledge Graph Completion
- Authors: Kai Sun, Jiapu Wang, Huajie Jiang, Yongli Hu, Baocai Yin,
- Abstract summary: This paper proposes the Query-Enhanced Adaptive Semantic Path Reasoning (QASPR) framework.
QASPR captures both the structural and semantic information of KGs to enhance the inductive KGC task.
experimental results demonstrate that QASPR achieves state-of-the-art performance.
- Score: 45.9995456784049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional Knowledge graph completion (KGC) methods aim to infer missing information in incomplete Knowledge Graphs (KGs) by leveraging existing information, which struggle to perform effectively in scenarios involving emerging entities. Inductive KGC methods can handle the emerging entities and relations in KGs, offering greater dynamic adaptability. While existing inductive KGC methods have achieved some success, they also face challenges, such as susceptibility to noisy structural information during reasoning and difficulty in capturing long-range dependencies in reasoning paths. To address these challenges, this paper proposes the Query-Enhanced Adaptive Semantic Path Reasoning (QASPR) framework, which simultaneously captures both the structural and semantic information of KGs to enhance the inductive KGC task. Specifically, the proposed QASPR employs a query-dependent masking module to adaptively mask noisy structural information while retaining important information closely related to the targets. Additionally, QASPR introduces a global semantic scoring module that evaluates both the individual contributions and the collective impact of nodes along the reasoning path within KGs. The experimental results demonstrate that QASPR achieves state-of-the-art performance.
Related papers
- Deep Sparse Latent Feature Models for Knowledge Graph Completion [24.342670268545085]
In this paper, we introduce a novel framework of sparse latent feature models for knowledge graphs.
Our approach not only effectively completes missing triples but also provides clear interpretability of the latent structures.
Our method significantly improves performance by revealing latent communities and producing interpretable representations.
arXiv Detail & Related papers (2024-11-24T03:17:37Z) - An Adaptive Framework for Generating Systematic Explanatory Answer in Online Q&A Platforms [62.878616839799776]
We propose SynthRAG, an innovative framework designed to enhance Question Answering (QA) performance.
SynthRAG improves on conventional models by employing adaptive outlines for dynamic content structuring.
An online deployment on the Zhihu platform revealed that SynthRAG's answers achieved notable user engagement.
arXiv Detail & Related papers (2024-10-23T09:14:57Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs)
We propose StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure.
Experiments show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios.
arXiv Detail & Related papers (2024-10-11T13:52:44Z) - Context Graph [8.02985792541121]
We present a context graph reasoning textbfCGR$3$ paradigm that leverages large language models (LLMs) to retrieve candidate entities and related contexts.
Our experimental results demonstrate that CGR$3$ significantly improves performance on KG completion (KGC) and KG question answering (KGQA) tasks.
arXiv Detail & Related papers (2024-06-17T02:59:19Z) - Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph [38.31983923708175]
This paper focuses on the Question Answering over Knowledge Graph (KGQA) task.
It proposes an Explore-then-Determine (EtD) framework that synergizes Large Language Models with graph neural networks (GNNs) for reasoning over KGs.
EtD achieves state-of-the-art performance and generates faithful reasoning results.
arXiv Detail & Related papers (2024-06-03T09:38:28Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
Large Language Model Agents (LMAs) face issues such as information hallucinations, catastrophic forgetting, and limitations in processing long contexts.
This paper introduces a KG-RAG (Knowledge Graph-Retrieval Augmented Generation) pipeline to enhance the knowledge capabilities of LMAs.
Preliminary experiments on the ComplexWebQuestions dataset demonstrate notable improvements in the reduction of hallucinated content.
arXiv Detail & Related papers (2024-05-20T14:03:05Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Anchoring Path for Inductive Relation Prediction in Knowledge Graphs [69.81600732388182]
APST takes both APs and CPs as the inputs of a unified Sentence Transformer architecture.
We evaluate APST on three public datasets and achieve state-of-the-art (SOTA) performance in 30 of 36 transductive, inductive, and few-shot experimental settings.
arXiv Detail & Related papers (2023-12-21T06:02:25Z) - KG-ECO: Knowledge Graph Enhanced Entity Correction for Query Rewriting [15.243664083941287]
In this work, we propose KG-ECO: Knowledge Graph enhanced Entity COrrection for query rewriting.
To boost the model performance, we incorporate Knowledge Graph (KG) to provide entity structural information.
Experimental results show that our approach yields a clear performance gain over two baselines.
arXiv Detail & Related papers (2023-02-21T05:42:06Z) - QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering [122.84513233992422]
We propose a new model, QA-GNN, which addresses the problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs)
We show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning.
arXiv Detail & Related papers (2021-04-13T17:32:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.