論文の概要: Effective regions and kernels in continuous sparse regularisation, with application to sketched mixtures
- arxiv url: http://arxiv.org/abs/2507.08444v1
- Date: Fri, 11 Jul 2025 09:35:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.310781
- Title: Effective regions and kernels in continuous sparse regularisation, with application to sketched mixtures
- Title(参考訳): 連続スパース正規化における有効領域と核、およびスケッチ混合への応用
- Authors: Yohann De Castro, Rémi Gribonval, Nicolas Jouvin,
- Abstract要約: 本稿では,BLASSO(Bourling-LASSO)を用いた計測における連続スパース正規化の理論を推し進める。
BLASSO局所化誤差はノイズレベルによって減少し, 付近で有効となることを示す。
- 参考スコア(独自算出の注目度): 12.242935230563834
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper advances the general theory of continuous sparse regularisation on measures with the Beurling-LASSO (BLASSO). This TV-regularized convex program on the space of measures allows to recover a sparse measure using a noisy observation from an appropriate measurement operator. While previous works have uncovered the central role played by this operator and its associated kernel in order to get estimation error bounds, the latter requires a technical local positive curvature (LPC) assumption to be verified on a case-by-case basis. In practice, this yields only few LPC-kernels for which this condition is proved. At the heart of our contribution lies the kernel switch, which uncouples the model kernel from the LPC assumption: it enables to leverage any known LPC-kernel as a pivot kernel to prove error bounds, provided embedding conditions are verified between the model and pivot RKHS. We increment the list of LPC-kernels, proving that the "sinc-4" kernel, used for signal recovery and mixture problems, does satisfy the LPC assumption. Furthermore, we also show that the BLASSO localisation error around the true support decreases with the noise level, leading to effective near regions. This improves on known results where this error is fixed with some parameters depending on the model kernel. We illustrate the interest of our results in the case of translation-invariant mixture model estimation, using bandlimiting smoothing and sketching techniques to reduce the computational burden of BLASSO.
- Abstract(参考訳): 本稿では、BLASSO(Bourling-LASSO)を用いた測度における連続スパース正規化の一般理論を推し進める。
本発明のテレビ正規化凸プログラムは、適切な測定演算子からのノイズ観測を用いてスパース測度を復元することができる。
従来の研究では、推定誤差境界を得るためにこの演算子とその関連するカーネルが果たす中心的な役割が明らかにされているが、後者はケースバイケースで検証する技術的局所正曲率(LPC)の仮定を必要とする。
実際には、この条件が証明されるLPCカーネルはごくわずかである。
モデルとRKHSの間に埋め込み条件が検証されれば、既知のLPCカーネルをピボットカーネルとして活用してエラー境界を証明できます。
信号回復と混合問題に使用される"sinc-4"カーネルがLPC仮定を満たすことを証明したLPCカーネルのリストを増大させる。
さらに,BLASSO局所化誤差がノイズレベルによって減少し,近距離域で有効となることを示す。
これにより、このエラーがモデルカーネルに依存するパラメータで固定される既知の結果が改善される。
本稿では,BLASSOの計算負担を軽減するために,帯域分割平滑化法とスケッチ法を用いて翻訳不変混合モデル推定を行った。
関連論文リスト
- Constrained Sampling with Primal-Dual Langevin Monte Carlo [15.634831573546041]
この研究は、正規化定数まで既知の確率分布からサンプリングする問題を考察する。
一般非線形関数の期待値によって定義された統計的制約の集合を満たす。
我々は,目標分布とサンプルを同時に制約する離散時間原始二元Langevin Monte Carloアルゴリズム(PD-LMC)を提唱した。
論文 参考訳(メタデータ) (2024-11-01T13:26:13Z) - Optimal Rates and Saturation for Noiseless Kernel Ridge Regression [4.585021053685196]
ノイズレスシステムにおけるカーネルリッジ回帰(KRR)の総合的研究について述べる。
KRRは有限標本から関数を学習するための基本的な方法である。
我々は、カーネルメソッドの解析に広く適用可能な、洗練された自由度の概念を導入する。
論文 参考訳(メタデータ) (2024-02-24T04:57:59Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Batches Stabilize the Minimum Norm Risk in High Dimensional Overparameterized Linear Regression [12.443289202402761]
最小ノルム過パラメータ線形回帰モデルのレンズによるバッチ分割の利点を示す。
最適なバッチサイズを特徴付け、ノイズレベルに逆比例することを示す。
また,Weiner係数と同等の係数によるバッチ最小ノルム推定器の縮小がさらに安定化し,全ての設定において2次リスクを低くすることを示した。
論文 参考訳(メタデータ) (2023-06-14T11:02:08Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
マルチカーネルクラスタリング(MKC)は、ベースカーネルの集合から最適な情報融合を実現するためにコミットされる。
本稿では,新しい局所サンプル重み付きマルチカーネルクラスタリングモデルを提案する。
実験により, LSWMKCはより優れた局所多様体表現を有し, 既存のカーネルやグラフベースのクラスタリングアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2022-07-05T05:00:38Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - A PAC-Bayesian Analysis of Distance-Based Classifiers: Why
Nearest-Neighbour works! [12.317405551932195]
K-nearest-neighbour分類器(K-NN)の一般化誤差に対するPAC-Bayesian境界
我々は、カーネル展開における係数に関する事前測度と、カーネル空間における重みベクトルに関する誘導測度との関係を確立する。
論文 参考訳(メタデータ) (2021-09-28T17:35:57Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
カーネルヒルベルト空間を用いて、無限水平割引マルコフ報酬過程の値関数を推定する。
我々は、関連するカーネル演算子の固有値に明示的に依存した誤差の非漸近上界を導出する。
MRP のサブクラスに対する minimax の下位境界を証明する。
論文 参考訳(メタデータ) (2021-09-24T14:48:20Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。