論文の概要: STRAP: Spatial-Temporal Risk-Attentive Vehicle Trajectory Prediction for Autonomous Driving
- arxiv url: http://arxiv.org/abs/2507.08563v2
- Date: Mon, 14 Jul 2025 08:04:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 12:29:47.618328
- Title: STRAP: Spatial-Temporal Risk-Attentive Vehicle Trajectory Prediction for Autonomous Driving
- Title(参考訳): STRAP: 自律走行のための空間的リスク回避型車両軌道予測
- Authors: Xinyi Ning, Zilin Bian, Dachuan Zuo, Semiha Ergan,
- Abstract要約: 本稿では,リスクポテンシャル場を組み込んだ新しい空間的・時間的リスク回避軌道予測フレームワークを提案する。
提案するフレームワークは、解釈可能でリスク対応の予測を提供し、自律運転システムに対するより堅牢な意思決定に寄与する。
- 参考スコア(独自算出の注目度): 0.968535561940627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate vehicle trajectory prediction is essential for ensuring safety and efficiency in fully autonomous driving systems. While existing methods primarily focus on modeling observed motion patterns and interactions with other vehicles, they often neglect the potential risks posed by the uncertain or aggressive behaviors of surrounding vehicles. In this paper, we propose a novel spatial-temporal risk-attentive trajectory prediction framework that incorporates a risk potential field to assess perceived risks arising from behaviors of nearby vehicles. The framework leverages a spatial-temporal encoder and a risk-attentive feature fusion decoder to embed the risk potential field into the extracted spatial-temporal feature representations for trajectory prediction. A risk-scaled loss function is further designed to improve the prediction accuracy of high-risk scenarios, such as short relative spacing. Experiments on the widely used NGSIM and HighD datasets demonstrate that our method reduces average prediction errors by 4.8% and 31.2% respectively compared to state-of-the-art approaches, especially in high-risk scenarios. The proposed framework provides interpretable, risk-aware predictions, contributing to more robust decision-making for autonomous driving systems.
- Abstract(参考訳): 完全自律運転システムの安全性と効率を確保するためには,正確な車両軌道予測が不可欠である。
既存の手法は主に観察された動きパターンと他の車両との相互作用をモデル化することに焦点を当てているが、周囲の車両の不確実性や攻撃的な行動によって生じる潜在的なリスクを無視することが多い。
本稿では,周辺車両の挙動から生じるリスクを検知するために,リスクポテンシャル場を組み込んだ空間的・時間的リスク回避軌道予測フレームワークを提案する。
このフレームワークは、空間的時間的エンコーダとリスク回避的特徴融合デコーダを利用して、抽出した空間的時間的特徴表現にリスクポテンシャル場を埋め込んで軌道予測を行う。
リスクスケールの損失関数はさらに、短い相対間隔のようなリスクの高いシナリオの予測精度を向上させるように設計されている。
NGSIMとHighDデータセットを用いた実験では,特にリスクの高いシナリオにおいて,最先端の手法と比較して平均予測誤差が4.8%,31.2%削減された。
提案するフレームワークは、解釈可能でリスク対応の予測を提供し、自律運転システムに対するより堅牢な意思決定に寄与する。
関連論文リスト
- RiskNet: Interaction-Aware Risk Forecasting for Autonomous Driving in Long-Tail Scenarios [6.024186631622774]
RiskNetは自動運転車のリスク予測フレームワークである。
決定論的リスクモデリングと確率論的行動予測を統合し、包括的リスク評価を行う。
リアルタイムでシナリオ適応型のリスク予測をサポートし、不確実な運転環境全体にわたって強力な一般化を示す。
論文 参考訳(メタデータ) (2025-04-22T02:36:54Z) - Risk-Aware Vehicle Trajectory Prediction Under Safety-Critical Scenarios [25.16311876790003]
本稿では,安全クリティカルシナリオに適したリスク対応軌道予測フレームワークを提案する。
安全クリティカルな軌道予測データセットと調整された評価指標を導入する。
その結果,モデルの性能が向上し,ほとんどの指標が大幅に改善した。
論文 参考訳(メタデータ) (2024-07-18T13:00:01Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Probabilistic Uncertainty-Aware Risk Spot Detector for Naturalistic
Driving [1.8047694351309207]
リスクアセスメントは自動運転車の開発と検証の中心的な要素である。
Time Headway (TH) と Time-To-Contact (TTC) は一般的にリスクメトリクスとして使われ、発生確率と質的な関係を持つ。
本稿では,生存分析に基づく確率論的状況リスクモデルを提案し,それを自然に知覚・時間的・行動的不確実性に組み込むよう拡張する。
論文 参考訳(メタデータ) (2023-03-13T15:22:51Z) - Mathematical Models of Human Drivers Using Artificial Risk Fields [8.074019565026544]
我々は、人間の運転者が今後の道路状況に応じてどのように車両を制御するかを予測するために、人工リスクフィールドの概念を用いる。
リスクフィールドは、最大20秒の予測地平線において、高い予測精度で将来の軌道を予測するのに優れている。
論文 参考訳(メタデータ) (2022-05-24T15:39:01Z) - Prediction-Based Reachability Analysis for Collision Risk Assessment on
Highways [18.18842948832662]
本稿では,高速道路における衝突危険度予測手法を提案する。
我々は,車両状態を伝搬する多モード確率加速度分布を提供する加速度予測モデルを開発した。
提案した衝突検出アプローチはアジャイルであり、カットインクラッシュイベントにおける衝突の特定に有効である。
論文 参考訳(メタデータ) (2022-05-03T07:58:02Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
本研究では,無人運転用無人車を用いた新しい作業,安全を意識した動作予測手法について検討する。
既存の車両の軌道予測タスクとは異なり、占有率マップの予測が目的である。
私たちのアプローチは、ほとんどの場合、目に見えない車両の存在を予測できる最初の方法です。
論文 参考訳(メタデータ) (2021-09-03T13:33:33Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
トレーニング外の配布(OOD)シナリオは、デプロイ時にエージェントを学ぶ上で一般的な課題である。
インプロバスト模倣計画(RIP)と呼ばれる不確実性を考慮した計画手法を提案する。
提案手法は,OODシーンにおける過信および破滅的な外挿を低減し,分布変化を検知し,回復することができる。
分散シフトを伴うタスク群に対する駆動エージェントのロバスト性を評価するために,自動走行車ノベルシーンベンチマークであるtexttCARNOVEL を導入する。
論文 参考訳(メタデータ) (2020-06-26T11:07:32Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。