Remote Sensing Reveals Adoption of Sustainable Rice Farming Practices Across Punjab, India
- URL: http://arxiv.org/abs/2507.08605v1
- Date: Fri, 11 Jul 2025 14:00:43 GMT
- Title: Remote Sensing Reveals Adoption of Sustainable Rice Farming Practices Across Punjab, India
- Authors: Ando Shah, Rajveer Singh, Akram Zaytar, Girmaw Abebe Tadesse, Caleb Robinson, Negar Tafti, Stephen A. Wood, Rahul Dodhia, Juan M. Lavista Ferres,
- Abstract summary: Rice cultivation consumes 24-30% of global freshwater, creating water management challenges in major rice-producing regions.<n>We developed a novel remote sensing framework to monitor sustainable water management practices at scale in Punjab, India.<n>This study provides policymakers with a powerful tool to track sustainable water management adoption, target interventions, and measure program impacts at scale.
- Score: 3.1462853484338305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rice cultivation consumes 24-30% of global freshwater, creating critical water management challenges in major rice-producing regions. Sustainable irrigation practices like direct seeded rice (DSR) and alternate wetting and drying (AWD) can reduce water use by 20-40% while maintaining yields, helping secure long-term agricultural productivity as water scarcity intensifies - a key component of the Zero Hunger Sustainable Development Goal. However, limited data on adoption rates of these practices prevents evidence-based policymaking and targeted resource allocation. We developed a novel remote sensing framework to monitor sustainable water management practices at scale in Punjab, India - a region facing severe groundwater depletion of 41.6 cm/year. To collect essential ground truth data, we partnered with the Nature Conservancy's Promoting Regenerative and No-burn Agriculture (PRANA) program, which trained approximately 1,400 farmers on water-saving techniques while documenting their field-level practices. Using this data, we created a classification system with Sentinel-1 satellite imagery that separates water management along sowing and irrigation dimensions. Our approach achieved a 78% F1-score in distinguishing DSR from traditional puddled transplanted rice without requiring prior knowledge of planting dates. We demonstrated scalability by mapping DSR adoption across approximately 3 million agricultural plots in Punjab, with district-level predictions showing strong correlation (Pearson=0.77, RBO= 0.77) with government records. This study provides policymakers with a powerful tool to track sustainable water management adoption, target interventions, and measure program impacts at scale.
Related papers
- AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock [77.95897723270453]
Crops, fisheries and livestock form the backbone of global food production, essential to feed the ever-growing global population.<n> Addressing these issues requires efficient, accurate, and scalable technological solutions, highlighting the importance of artificial intelligence (AI)<n>This survey presents a systematic and thorough review of more than 200 research works covering conventional machine learning approaches, advanced deep learning techniques, and recent vision-language foundation models.
arXiv Detail & Related papers (2025-07-29T17:59:48Z) - Development of a Smart Autonomous Irrigation System Using Iot and AI [0.0]
uncontrolled management can lead to water waste while reducing agricultural productivity.<n>Drip irrigation systems have been one of the most efficient methods since the 1970s.<n>System aims to increase labour productivity and contribute to the conservation of water resources.
arXiv Detail & Related papers (2025-06-13T14:37:34Z) - Accurate Water Level Monitoring in AWD Rice Cultivation Using Convolutional Neural Networks [1.2058600649065618]
Climate change has placed the agricultural sector in a challenging position, particularly as global water resources become increasingly scarce.<n>In Bangladesh, Boro rice, in particular, requires considerable water inputs during its cultivation.<n>Traditionally, farmers manually measure water levels, a process that is both time-consuming and prone to errors.<n>We propose a novel approach that automates water height measurement using computer vision, specifically through a convolutional neural network.
arXiv Detail & Related papers (2024-12-11T15:44:08Z) - Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Optimizing Irrigation Efficiency using Deep Reinforcement Learning in
the Field [4.091593765662773]
Agricultural irrigation is a significant contributor to freshwater consumption.
Current irrigation systems do not account for future soil moisture loss.
This paper proposes a solution to improve irrigation efficiency, which is called DRLIC.
arXiv Detail & Related papers (2023-04-04T01:04:53Z) - Domain Generalization for Crop Segmentation with Standardized Ensemble Knowledge Distillation [42.39035033967183]
Service robots need a real-time perception system that understands their surroundings and identifies their targets in the wild.
Existing methods, however, often fall short in generalizing to new crops and environmental conditions.
We propose a novel approach to enhance domain generalization using knowledge distillation.
arXiv Detail & Related papers (2023-04-03T14:28:29Z) - Self-supervised Contrastive Learning for Irrigation Detection in
Satellite Imagery [0.7584685045934025]
Climate change has caused reductions in river runoffs and aquifer recharge resulting in an increasingly unsustainable crop water demand from reduced freshwater availability.
Achieving food security while deploying water in a sustainable manner will continue to be a major challenge necessitating careful monitoring and tracking of agricultural water usage.
We apply state-of-the-art self-supervised deep learning techniques to optical remote sensing data, and find that we are able to detect irrigation with up to nine times better precision, 90% better recall and 40% more generalization ability than the traditional supervised learning methods.
arXiv Detail & Related papers (2021-08-12T01:13:04Z) - High-resolution global irrigation prediction with Sentinel-2 30m data [0.8137198664755597]
An accurate and precise understanding of global irrigation usage is crucial for a variety of climate science efforts.
We have developed a novel irrigation model and Python package ("Irrigation30") to generate 30m resolution irrigation predictions of cropland worldwide.
Our model was able to achieve consistency scores in excess of 97% and an accuracy of 92% in a small geo-diverse randomly sampled test set.
arXiv Detail & Related papers (2020-12-09T17:26:43Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
Special issue presents the latest development in statistical inference, machine learning and optimum control for precision farming.
Satellite positioning and navigation followed by Internet-of-Things generate vast information that can be used to optimize farming processes in real-time.
arXiv Detail & Related papers (2020-07-07T12:44:17Z) - Farmland Parcel Delineation Using Spatio-temporal Convolutional Networks [77.63950365605845]
Farm parcel delineation provides cadastral data that is important in developing and managing climate change policies.
This data can also be useful for the agricultural insurance sector for assessing compensations following damages associated with extreme weather events.
Using satellite imaging can be a scalable and cost effective manner to perform the task of farm parcel delineation.
arXiv Detail & Related papers (2020-04-11T19:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.