Towards Collaborative Fairness in Federated Learning Under Imbalanced Covariate Shift
- URL: http://arxiv.org/abs/2507.08617v1
- Date: Fri, 11 Jul 2025 14:13:41 GMT
- Title: Towards Collaborative Fairness in Federated Learning Under Imbalanced Covariate Shift
- Authors: Tianrun Yu, Jiaqi Wang, Haoyu Wang, Mingquan Lin, Han Liu, Nelson S. Yee, Fenglong Ma,
- Abstract summary: FedAKD (Federated Asynchronous Knowledge Distillation) is a simple yet effective approach that balances accurate prediction with collaborative fairness.<n>We show that FedAKD significantly improves collaborative fairness, enhances predictive accuracy, and fosters client participation even under highly heterogeneous data distributions.
- Score: 38.61713097663966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative fairness is a crucial challenge in federated learning. However, existing approaches often overlook a practical yet complex form of heterogeneity: imbalanced covariate shift. We provide a theoretical analysis of this setting, which motivates the design of FedAKD (Federated Asynchronous Knowledge Distillation)- simple yet effective approach that balances accurate prediction with collaborative fairness. FedAKD consists of client and server updates. In the client update, we introduce a novel asynchronous knowledge distillation strategy based on our preliminary analysis, which reveals that while correctly predicted samples exhibit similar feature distributions across clients, incorrectly predicted samples show significant variability. This suggests that imbalanced covariate shift primarily arises from misclassified samples. Leveraging this insight, our approach first applies traditional knowledge distillation to update client models while keeping the global model fixed. Next, we select correctly predicted high-confidence samples and update the global model using these samples while keeping client models fixed. The server update simply aggregates all client models. We further provide a theoretical proof of FedAKD's convergence. Experimental results on public datasets (FashionMNIST and CIFAR10) and a real-world Electronic Health Records (EHR) dataset demonstrate that FedAKD significantly improves collaborative fairness, enhances predictive accuracy, and fosters client participation even under highly heterogeneous data distributions.
Related papers
- FedImpro: Measuring and Improving Client Update in Federated Learning [77.68805026788836]
Federated Learning (FL) models often experience client drift caused by heterogeneous data.
We present an alternative perspective on client drift and aim to mitigate it by generating improved local models.
arXiv Detail & Related papers (2024-02-10T18:14:57Z) - Leveraging Foundation Models to Improve Lightweight Clients in Federated
Learning [16.684749528240587]
Federated Learning (FL) is a distributed training paradigm that enables clients scattered across the world to cooperatively learn a global model without divulging confidential data.
FL faces a significant challenge in the form of heterogeneous data distributions among clients, which leads to a reduction in performance and robustness.
We introduce foundation model distillation to assist in the federated training of lightweight client models and increase their performance under heterogeneous data settings while keeping inference costs low.
arXiv Detail & Related papers (2023-11-14T19:10:56Z) - Heterogeneous Federated Learning via Personalized Generative Networks [7.629157720712401]
Federated Learning (FL) allows several clients to construct a common global machine-learning model without having to share their data.
We propose a method for knowledge transfer between clients where the server trains client-specific generators.
arXiv Detail & Related papers (2023-08-25T09:37:02Z) - Adaptive Federated Learning via New Entropy Approach [14.595709494370372]
Federated Learning (FL) has emerged as a prominent distributed machine learning framework.
In this paper, we propose an adaptive FEDerated learning algorithm based on ENTropy theory (FedEnt) to alleviate the parameter deviation among heterogeneous clients.
arXiv Detail & Related papers (2023-03-27T07:57:04Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - FedRAD: Federated Robust Adaptive Distillation [7.775374800382709]
Collaborative learning framework by typically aggregating model updates is vulnerable to model poisoning attacks from adversarial clients.
We propose a novel robust aggregation method, Federated Robust Adaptive Distillation (FedRAD), to detect adversaries and robustly aggregate local models.
The results show that FedRAD outperforms all other aggregators in the presence of adversaries, as well as in heterogeneous data distributions.
arXiv Detail & Related papers (2021-12-02T16:50:57Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.