Cavity-less Brillouin strong coupling in a solid-state continuous system
- URL: http://arxiv.org/abs/2507.08673v2
- Date: Thu, 17 Jul 2025 19:42:51 GMT
- Title: Cavity-less Brillouin strong coupling in a solid-state continuous system
- Authors: Laura Blázquez Martínez, Changlong Zhu, Birgit Stiller,
- Abstract summary: We present the experimental realization of strong coupling between optical and acoustic fields within a continuum of modes in a cavity-less configuration after a single-pass through an optical waveguide.<n>We show the splitting of the optoacoustic spectral response and introduce a novel technique to measure the avoided crossing of hybrid optoacoustic modes via forced detuning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Strongly coupling two systems allows them to exchange coherent information before the systems decohere. This important regime in light-matter interactions has predominantly been reached in optical resonator configurations. In this work, we present the experimental realization of strong coupling between optical and acoustic fields within a continuum of modes in a cavity-less configuration after a single-pass through an optical waveguide. The underlying physical effect of anti-Stokes Brillouin-Mandelstam scattering in a highly nonlinear fiber at T = 4 K allows us to experimentally demonstrate strong coupling in a waveguide scenario. We show the splitting of the optoacoustic spectral response and introduce a novel technique to measure the avoided crossing of hybrid optoacoustic modes via forced detuning. This demonstration opens a path towards in-line acoustic-waves-based quantum signal processing in waveguide systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Optoacoustic entanglement in a continuous Brillouin-active solid state
system [0.0]
Entanglement in hybrid quantum systems comprised of fundamentally different degrees of freedom is of interest.
We propose to engineer bipartite entanglement between traveling acoustic phonons in a Brillouin active solid state system.
The proposed mechanism presents an important feature in that it does not require initial preparation of the quantum ground state of the phonon mode.
arXiv Detail & Related papers (2024-01-19T12:38:15Z) - Impact of the phonon environment on the nonlinear quantum-dot-cavity
QED. I. Path-integral approach [0.0]
We show a strong influence of the phonon environment on the coherent dynamics of the quantum dot (QD)-cavity system.
We present a semi-analytically exact path-based approach to the nonlinear optical response of this system.
arXiv Detail & Related papers (2023-06-30T15:08:29Z) - Enhanced sensing of optomechanically induced nonlinearity by linewidth
suppression and optical bistability in cavity-waveguide systems [7.091167436865527]
We study enhanced sensing of optomechanically induced nonlinearity (OMIN) in a cavity-waveguide coupled system.
Based on the integrated optomechanical cavity-waveguide systems, the scheme can be used for sensing different physical quantities related to the single-photon coupling strength.
arXiv Detail & Related papers (2022-11-21T09:50:12Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Controlled unidirectional reflectionlessness by coupling strength in a
non-Hermitian waveguide quantum electrodynamics system [0.0]
Unidirectional reflectionlessness is investigated in a waveguide quantum electrodynamics system.
Results might find applications in designing quantum devices of photons, such as optical switches and single-photon transistors.
arXiv Detail & Related papers (2022-07-12T10:03:57Z) - Coupling Quantum Antennas to Fibers and Waveguides [0.0]
We present a brief overview of the transport of quantum light across a one-dimensional waveguide.
We demonstrate a scheme to implement transparency by suitably tuning the atomic frequencies.
The fiber-mediated interaction between integrated dipoles allows one to achieve both dispersive and dissipative couplings.
arXiv Detail & Related papers (2021-11-05T00:13:19Z) - Localized vibrational modes in waveguide quantum optomechanics with
spontaneously broken PT symmetry [117.44028458220427]
We study theoretically two vibrating quantum emitters trapped near a one-dimensional waveguide and interacting with propagating photons.
In the regime of strong optomechanical interaction the light-induced coupling of emitter vibrations can lead to formation of spatially localized vibration modes, exhibiting parity-time symmetry breaking.
arXiv Detail & Related papers (2021-06-29T12:45:44Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.