Coupling Quantum Antennas to Fibers and Waveguides
- URL: http://arxiv.org/abs/2111.03200v1
- Date: Fri, 5 Nov 2021 00:13:19 GMT
- Title: Coupling Quantum Antennas to Fibers and Waveguides
- Authors: Girish S. Agarwal and Debsuvra Mukhopadhyay
- Abstract summary: We present a brief overview of the transport of quantum light across a one-dimensional waveguide.
We demonstrate a scheme to implement transparency by suitably tuning the atomic frequencies.
The fiber-mediated interaction between integrated dipoles allows one to achieve both dispersive and dissipative couplings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a brief overview of the transport of quantum light across a
one-dimensional waveguide which is integrated with a periodic string of
quantum-scale dipoles. We demonstrate a scheme to implement transparency by
suitably tuning the atomic frequencies without applying a coupling field and
bring out the pronounced non-reciprocity of this optical device. The
fiber-mediated interaction between integrated dipoles allows one to achieve
both dispersive and dissipative couplings, level repulsion and attraction, and
enhanced sensing capabilities. All these ideas can be translated to a wide
variety of experimental setups of topical interest such as resonators on a
transmission line, cold atoms near a fiber and quantum dots coupled to
plasmonic excitations in a nanowire or photonic crystal waveguides.
Related papers
- Independent electrical control of two quantum dots coupled through a
photonic-crystal waveguide [0.49252227263015774]
Two semiconductor quantum dot emitters are efficiently coupled to a photonic-crystal waveguide.
We exploit the single-photon stream from one quantum dot to perform spectroscopy on the second quantum dot positioned 16$mu$m away in the waveguide.
arXiv Detail & Related papers (2023-03-01T09:13:47Z) - Controlled unidirectional reflectionlessness by coupling strength in a
non-Hermitian waveguide quantum electrodynamics system [0.0]
Unidirectional reflectionlessness is investigated in a waveguide quantum electrodynamics system.
Results might find applications in designing quantum devices of photons, such as optical switches and single-photon transistors.
arXiv Detail & Related papers (2022-07-12T10:03:57Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z) - A versatile quantum simulator for coupled oscillators using a 1D chain
of atoms trapped near an optical nanofiber [0.0]
transversely confined propagating light modes of a nano-photonic optical waveguide or nanofiber can mediate effectively infinite-range forces.
We show that for a linear chain of particles trapped within the waveguide's evanescent field, transverse illumination with a suitable set of laser frequencies should allow the implementation of a coupled-oscillator quantum simulator.
arXiv Detail & Related papers (2021-05-07T13:42:01Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Coupling colloidal quantum dots to gap waveguides [62.997667081978825]
coupling between single photon emitters and integrated photonic circuits is an emerging topic relevant for quantum information science and other nanophotonic applications.
We investigate the coupling between a hybrid system of colloidal quantum dots and propagating gap modes of a silicon nitride waveguide system.
arXiv Detail & Related papers (2020-03-30T21:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.