Modeling Partially Observed Nonlinear Dynamical Systems and Efficient Data Assimilation via Discrete-Time Conditional Gaussian Koopman Network
- URL: http://arxiv.org/abs/2507.08749v1
- Date: Fri, 11 Jul 2025 16:59:27 GMT
- Title: Modeling Partially Observed Nonlinear Dynamical Systems and Efficient Data Assimilation via Discrete-Time Conditional Gaussian Koopman Network
- Authors: Chuanqi Chen, Zhongrui Wang, Nan Chen, Jin-Long Wu,
- Abstract summary: A conditional Gaussian Koopman network (CGKN) is developed to learn surrogate models for high-dimensional complex dynamical systems.<n>The framework unifies scientific machine learning (SciML) and data assimilation.
- Score: 1.3110675202172877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A discrete-time conditional Gaussian Koopman network (CGKN) is developed in this work to learn surrogate models that can perform efficient state forecast and data assimilation (DA) for high-dimensional complex dynamical systems, e.g., systems governed by nonlinear partial differential equations (PDEs). Focusing on nonlinear partially observed systems that are common in many engineering and earth science applications, this work exploits Koopman embedding to discover a proper latent representation of the unobserved system states, such that the dynamics of the latent states are conditional linear, i.e., linear with the given observed system states. The modeled system of the observed and latent states then becomes a conditional Gaussian system, for which the posterior distribution of the latent states is Gaussian and can be efficiently evaluated via analytical formulae. The analytical formulae of DA facilitate the incorporation of DA performance into the learning process of the modeled system, which leads to a framework that unifies scientific machine learning (SciML) and data assimilation. The performance of discrete-time CGKN is demonstrated on several canonical problems governed by nonlinear PDEs with intermittency and turbulent features, including the viscous Burgers' equation, the Kuramoto-Sivashinsky equation, and the 2-D Navier-Stokes equations, with which we show that the discrete-time CGKN framework achieves comparable performance as the state-of-the-art SciML methods in state forecast and provides efficient and accurate DA results. The discrete-time CGKN framework also serves as an example to illustrate unifying the development of SciML models and their other outer-loop applications such as design optimization, inverse problems, and optimal control.
Related papers
- PINN-Obs: Physics-Informed Neural Network-Based Observer for Nonlinear Dynamical Systems [2.884893167166808]
This paper introduces a novel Adaptive Physics-Informed Neural Network-based Observer (PINN-Obs) for accurate state estimation in nonlinear systems.<n>Unlike traditional model-based observers, which require explicit system transformations or linearization, the proposed framework directly integrates system dynamics and sensor data into a physics-informed learning process.
arXiv Detail & Related papers (2025-07-09T10:09:45Z) - Nonlinear Model Order Reduction of Dynamical Systems in Process Engineering: Review and Comparison [50.0791489606211]
We review state-of-the-art nonlinear model order reduction methods.<n>We discuss both general-purpose methods and tailored approaches for (chemical) process systems.
arXiv Detail & Related papers (2025-06-15T11:39:12Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - SODAs: Sparse Optimization for the Discovery of Differential and Algebraic Equations [0.0]
We introduce Sparse Optimization for Differential-Algebraic Systems (SODAs)<n>SODAs is a data-driven method for the identification of DAEs in their explicit form.<n>We demonstrate its robustness to noise in both simulated time series and real-time experimental data.
arXiv Detail & Related papers (2025-03-08T00:29:00Z) - CGKN: A Deep Learning Framework for Modeling Complex Dynamical Systems and Efficient Data Assimilation [1.3110675202172877]
We introduce a deep learning framework designed to simultaneously provide accurate forecasts and efficient DA.<n> Conditional Gaussian Koopman Network (CGKN) transforms general nonlinear systems into nonlinear neural differential equations with conditional Gaussian structures.<n>We demonstrate the effectiveness of CGKN for both prediction and DA on strongly nonlinear and non-Gaussian turbulent systems.
arXiv Detail & Related papers (2024-10-26T04:30:00Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
We propose the combination of a variational integrator for the nominal dynamics of a mechanical system and learning residual dynamics with Gaussian process regression.
We extend our approach to systems with known kinematic constraints and provide formal bounds on the prediction uncertainty.
arXiv Detail & Related papers (2021-12-10T11:09:29Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Gaussian processes meet NeuralODEs: A Bayesian framework for learning
the dynamics of partially observed systems from scarce and noisy data [0.0]
This paper presents a machine learning framework (GP-NODE) for Bayesian systems identification from partial, noisy and irregular observations of nonlinear dynamical systems.
The proposed method takes advantage of recent developments in differentiable programming to propagate gradient information through ordinary differential equation solvers.
A series of numerical studies is presented to demonstrate the effectiveness of the proposed GP-NODE method including predator-prey systems, systems biology, and a 50-dimensional human motion dynamical system.
arXiv Detail & Related papers (2021-03-04T23:42:14Z) - Data Assimilation Networks [1.5545257664210517]
Data assimilation aims at forecasting the state of a dynamical system by combining a mathematical representation of the system with noisy observations.
We propose a fully data driven deep learning architecture generalizing recurrent Elman networks and data assimilation algorithms.
Our architecture achieves comparable performance to EnKF on both the analysis and the propagation of probability density functions of the system state at a given time without using any explicit regularization technique.
arXiv Detail & Related papers (2020-10-19T17:35:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.