PINN-Obs: Physics-Informed Neural Network-Based Observer for Nonlinear Dynamical Systems
- URL: http://arxiv.org/abs/2507.06712v1
- Date: Wed, 09 Jul 2025 10:09:45 GMT
- Title: PINN-Obs: Physics-Informed Neural Network-Based Observer for Nonlinear Dynamical Systems
- Authors: Ayoub Farkane, Mohamed Boutayeb, Mustapha Oudani, Mounir Ghogho,
- Abstract summary: This paper introduces a novel Adaptive Physics-Informed Neural Network-based Observer (PINN-Obs) for accurate state estimation in nonlinear systems.<n>Unlike traditional model-based observers, which require explicit system transformations or linearization, the proposed framework directly integrates system dynamics and sensor data into a physics-informed learning process.
- Score: 2.884893167166808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State estimation for nonlinear dynamical systems is a critical challenge in control and engineering applications, particularly when only partial and noisy measurements are available. This paper introduces a novel Adaptive Physics-Informed Neural Network-based Observer (PINN-Obs) for accurate state estimation in nonlinear systems. Unlike traditional model-based observers, which require explicit system transformations or linearization, the proposed framework directly integrates system dynamics and sensor data into a physics-informed learning process. The observer adaptively learns an optimal gain matrix, ensuring convergence of the estimated states to the true system states. A rigorous theoretical analysis establishes formal convergence guarantees, demonstrating that the proposed approach achieves uniform error minimization under mild observability conditions. The effectiveness of PINN-Obs is validated through extensive numerical simulations on diverse nonlinear systems, including an induction motor model, a satellite motion system, and benchmark academic examples. Comparative experimental studies against existing observer designs highlight its superior accuracy, robustness, and adaptability.
Related papers
- Modeling Partially Observed Nonlinear Dynamical Systems and Efficient Data Assimilation via Discrete-Time Conditional Gaussian Koopman Network [1.3110675202172877]
A conditional Gaussian Koopman network (CGKN) is developed to learn surrogate models for high-dimensional complex dynamical systems.<n>The framework unifies scientific machine learning (SciML) and data assimilation.
arXiv Detail & Related papers (2025-07-11T16:59:27Z) - Designing Robust Software Sensors for Nonlinear Systems via Neural Networks and Adaptive Sliding Mode Control [2.884893167166808]
This paper presents a novel approach to designing software sensors for nonlinear dynamical systems.<n>Unlike traditional model-based observers that rely on explicit transformations or linearization, the proposed framework integrates neural networks with adaptive Sliding Mode Control (SMC)<n>The training methodology leverages the system's governing equations as a physics-based constraint, enabling observer synthesis without access to ground-truth state trajectories.
arXiv Detail & Related papers (2025-07-09T13:06:58Z) - Certified Neural Approximations of Nonlinear Dynamics [52.79163248326912]
In safety-critical contexts, the use of neural approximations requires formal bounds on their closeness to the underlying system.<n>We propose a novel, adaptive, and parallelizable verification method based on certified first-order models.
arXiv Detail & Related papers (2025-05-21T13:22:20Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - KKL Observer Synthesis for Nonlinear Systems via Physics-Informed Learning [5.888531936968298]
We propose a novel learning approach for designing Kazantzis-Kravaris/Luenberger (KKL) observers for autonomous nonlinear systems.<n>The design of a KKL observer involves finding an injective map that transforms the system state into a higher-dimensional observer state.<n>We generate synthetic data for training by numerically solving the system and observer dynamics.
arXiv Detail & Related papers (2025-01-20T18:38:51Z) - Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
This paper explores the use of Physics-Informed Neural Networks (PINNs) for the identification and estimation of dynamical systems.
PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena.
The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors.
arXiv Detail & Related papers (2024-10-02T08:58:30Z) - Adaptive Meta-Learning-Based KKL Observer Design for Nonlinear Dynamical
Systems [0.0]
This paper presents a novel approach to observer design for nonlinear dynamical systems through meta-learning.
We introduce a framework that leverages information from measurements of the system output to design a learning-based KKL observer capable of online adaptation to a variety of system conditions and attributes.
arXiv Detail & Related papers (2023-10-30T12:25:14Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
We propose a neural dynamic mode decomposition for estimating a lift function based on neural networks.
With our proposed method, the forecast error is backpropagated through the neural networks and the spectral decomposition.
Our experiments demonstrate the effectiveness of our proposed method in terms of eigenvalue estimation and forecast performance.
arXiv Detail & Related papers (2020-12-11T08:34:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.