論文の概要: An Automated Classifier of Harmful Brain Activities for Clinical Usage Based on a Vision-Inspired Pre-trained Framework
- arxiv url: http://arxiv.org/abs/2507.08874v1
- Date: Thu, 10 Jul 2025 02:22:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:21.668557
- Title: An Automated Classifier of Harmful Brain Activities for Clinical Usage Based on a Vision-Inspired Pre-trained Framework
- Title(参考訳): 視覚に触発された事前学習フレームワークに基づく臨床用脳活動の自動分類
- Authors: Yulin Sun, Xiaopeng Si, Runnan He, Xiao Hu, Peter Smielewski, Wenlong Wang, Xiaoguang Tong, Wei Yue, Meijun Pang, Kuo Zhang, Xizi Song, Dong Ming, Xiuyun Liu,
- Abstract要約: VIPEEGNetはマサチューセッツ総合病院/ハーバード医科大学から記録された脳波を用いて開発された。
多重分類では、6つのカテゴリに対するVIPEEGNETの感度は36.8%から88.2%である。
- 参考スコア(独自算出の注目度): 4.264452248986976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Timely identification of harmful brain activities via electroencephalography (EEG) is critical for brain disease diagnosis and treatment, which remains limited application due to inter-rater variability, resource constraints, and poor generalizability of existing artificial intelligence (AI) models. In this study, a convolutional neural network model, VIPEEGNet, was developed and validated using EEGs recorded from Massachusetts General Hospital/Harvard Medical School. The VIPEEGNet was developed and validated using two independent datasets, collected between 2006 and 2020. The development cohort included EEG recordings from 1950 patients, with 106,800 EEG segments annotated by at least one experts (ranging from 1 to 28). The online testing cohort consisted of EEG segments from a subset of an additional 1,532 patients, each annotated by at least 10 experts. For the development cohort (n=1950), the VIPEEGNet achieved high accuracy, with an AUROC for binary classification of seizure, LPD, GPD, LRDA, GRDA, and "other" categories at 0.972 (95% CI, 0.957-0.988), 0.962 (95% CI, 0.954-0.970), 0.972 (95% CI, 0.960-0.984), 0.938 (95% CI, 0.917-0.959), 0.949 (95% CI, 0.941-0.957), and 0.930 (95% CI, 0.926-0.935). For multi classification, the sensitivity of VIPEEGNET for the six categories ranges from 36.8% to 88.2% and the precision ranges from 55.6% to 80.4%, and performance similar to human experts. Notably, the external validation showed Kullback-Leibler Divergence (KLD)of 0.223 and 0.273, ranking top 2 among the existing 2,767 competing algorithms, while we only used 2.8% of the parameters of the first-ranked algorithm.
- Abstract(参考訳): 脳波検査(EEG)による有害脳活動のタイムリーな同定は、脳疾患の診断と治療に不可欠であり、既存の人工知能(AI)モデルでは、時間的変動、資源的制約、一般化性の欠如により、適用範囲が限られている。
本研究では,マサチューセッツ総合病院・ハーバード医科大学における脳波を用いた畳み込みニューラルネットワークモデルVIPEEGNetを開発した。
VIPEEGNetは、2006年から2020年の間に収集された2つの独立したデータセットを使用して開発され、検証された。
開発コホートには1950年患者の脳波記録が含まれ、106,800個の脳波セグメントに少なくとも1人の専門家(1~28名)が注釈を付けた。
オンライン検査コホートは、追加で1,532人の脳波断片からなり、それぞれに少なくとも10人の専門家が注釈を付けた。
開発コホート(n=1950)に対して、VIPEEGNetは、発作、LDD、PD、LRDA、GRDAのバイナリ分類のためのAUROCを0.972(95% CI, 0.957-0.988), 0.962(95% CI, 0.960-0.984), 0.938(95% CI, 0.917-0.959), 0.949(95% CI, 0.941-0.957), 0.930(95% CI, 0.926-0.935), 0.930(95% CI, 0.926-0.935), 0.972(95% CI)とした。
マルチ分類では、6つのカテゴリのVIPEEGNETの感度は36.8%から88.2%、精度は55.6%から80.4%、性能は人間の専門家と同様である。
特に、既存の2,767の競合アルゴリズムの中で上位2位である0.223と0.273のKullback-Leibler Divergence(KLD)を示し、第1ランクアルゴリズムのパラメータの2.8%しか使用しなかった。
関連論文リスト
- Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment [3.5408411348831232]
MRIによる前立腺癌(PCa)のリスク階層化のための,完全に自動化された,解剖学的に指導されたディープラーニングパイプラインを提案する。
パイプラインは、前立腺とそのゾーンを軸方向のT2強調MRI上にセグメント化するためのnnU-Netモジュール、オプションの解剖学的先行と臨床データで3Dパッチに微調整されたDiceedPT Swin Transformer基盤モデルに基づく分類モジュール、決定駆動画像領域をローカライズする反ファクトなヒートマップを生成するVAE-GANフレームワークの3つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2025-05-23T14:40:09Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
本研究は、MIMIC-IVデータセットに基づく神経疾患患者を対象とした、ICUにおけるLOS予測のための複数のMLアプローチについて検討する。
評価されたモデルには、古典的MLアルゴリズム(K-Nearest Neighbors、Random Forest、XGBoost、CatBoost)とニューラルネットワーク(LSTM、BERT、テンポラルフュージョントランス)が含まれる。
論文 参考訳(メタデータ) (2025-05-23T14:06:42Z) - Artificial Intelligence-Based Triaging of Cutaneous Melanocytic Lesions [0.8864540224289991]
患者数の増加とより包括的な診断の必要性により、病理学者は作業負荷の増大に直面している。
われわれは,全スライド画像に基づいて皮膚メラノサイト性病変をトリアージする人工知能(AI)モデルを開発した。
論文 参考訳(メタデータ) (2024-10-14T13:49:04Z) - Advanced Predictive Modeling for Enhanced Mortality Prediction in ICU Stroke Patients Using Clinical Data [0.0]
ストロークは成人の障害と死亡の第二の要因である。
毎年1700万人が脳卒中を患っており、約85%が虚血性脳卒中である。
我々は、死亡リスクを評価するためのディープラーニングモデルを開発し、比較のためにいくつかのベースライン機械学習モデルを実装した。
論文 参考訳(メタデータ) (2024-07-19T11:17:42Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
460胸部X線で冠状動脈カルシウム(CAC)スコアを予測する深層学習アルゴリズムを開発した。
AICACモデルの診断精度は, 曲線下領域(AUC)で評価された。
論文 参考訳(メタデータ) (2024-03-27T16:56:14Z) - A Generalizable Artificial Intelligence Model for COVID-19
Classification Task Using Chest X-ray Radiographs: Evaluated Over Four
Clinical Datasets with 15,097 Patients [6.209420804714487]
トレーニングされたモデルの一般化性は、4つの異なる実世界の臨床データセットを用いて遡及的に評価された。
単一ソースの臨床データセットを使用してトレーニングされたAIモデルは、内部時間テストセットに適用すると、AUCが0.82に達した。
医療画像・データ資源センターが収集した多施設のCOVID-19データセットに適用すると、AUCは0.79に達した。
論文 参考訳(メタデータ) (2022-10-04T04:12:13Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
携帯電話カメラで中国とスペインで撮影された視線領域の画像を用いて、新型コロナウイルスの早期スクリーニングモデルを開発し、テストした。
AUC, 感度, 特異性, 精度, F1。
論文 参考訳(メタデータ) (2021-09-18T02:28:01Z) - Efficient and Visualizable Convolutional Neural Networks for COVID-19
Classification Using Chest CT [0.0]
新型コロナウイルスは2020年12月4日現在、世界中で6500万人以上が感染している。
ディープラーニングは有望な診断技術として登場した。
本稿では,40種類の畳み込みニューラルネットワークアーキテクチャを新型コロナウイルスの診断のために評価・比較する。
論文 参考訳(メタデータ) (2020-12-22T07:09:48Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
胸部CT(Central Computed Tomography)において,地域肺炎(CAP)からCOVID-19を自動診断するデュアルサンプリングアテンションネットワークを開発した。
特に,3D畳み込みネットワーク(CNN)を用いた新しいオンラインアテンションモジュールを提案する。
我々のアルゴリズムは、受信機動作特性曲線(AUC)値0.944、精度87.5%、感度86.9%、特異度90.1%、F1スコア82.0%の領域で、COVID-19画像を識別することができる。
論文 参考訳(メタデータ) (2020-05-06T09:56:51Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
提案法は,非造影胸部CTを入力として,病変,肺,葉を3次元に分割する。
この方法では、肺の重症度と葉の関与度を2つの組み合わせて測定し、COVID-19の異常度と高不透明度の存在度を定量化する。
このアルゴリズムの評価は、カナダ、ヨーロッパ、米国からの200人の参加者(感染者100人、健康管理100人)のCTで報告されている。
論文 参考訳(メタデータ) (2020-04-02T21:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。