論文の概要: Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment
- arxiv url: http://arxiv.org/abs/2505.17971v1
- Date: Fri, 23 May 2025 14:40:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:34.162071
- Title: Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment
- Title(参考訳): 前立腺MRIのための説明可能な解剖誘導型AI:仮想生検に基づくリスクアセスメントの基礎モデルと臨床試験
- Authors: Danial Khan, Zohaib Salahuddin, Yumeng Zhang, Sheng Kuang, Shruti Atul Mali, Henry C. Woodruff, Sina Amirrajab, Rachel Cavill, Eduardo Ibor-Crespo, Ana Jimenez-Pastor, Adrian Galiana-Bordera, Paula Jimenez Gomez, Luis Marti-Bonmati, Philippe Lambin,
- Abstract要約: MRIによる前立腺癌(PCa)のリスク階層化のための,完全に自動化された,解剖学的に指導されたディープラーニングパイプラインを提案する。
パイプラインは、前立腺とそのゾーンを軸方向のT2強調MRI上にセグメント化するためのnnU-Netモジュール、オプションの解剖学的先行と臨床データで3Dパッチに微調整されたDiceedPT Swin Transformer基盤モデルに基づく分類モジュール、決定駆動画像領域をローカライズする反ファクトなヒートマップを生成するVAE-GANフレームワークの3つの重要なコンポーネントを統合する。
- 参考スコア(独自算出の注目度): 3.5408411348831232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a fully automated, anatomically guided deep learning pipeline for prostate cancer (PCa) risk stratification using routine MRI. The pipeline integrates three key components: an nnU-Net module for segmenting the prostate gland and its zones on axial T2-weighted MRI; a classification module based on the UMedPT Swin Transformer foundation model, fine-tuned on 3D patches with optional anatomical priors and clinical data; and a VAE-GAN framework for generating counterfactual heatmaps that localize decision-driving image regions. The system was developed using 1,500 PI-CAI cases for segmentation and 617 biparametric MRIs with metadata from the CHAIMELEON challenge for classification (split into 70% training, 10% validation, and 20% testing). Segmentation achieved mean Dice scores of 0.95 (gland), 0.94 (peripheral zone), and 0.92 (transition zone). Incorporating gland priors improved AUC from 0.69 to 0.72, with a three-scale ensemble achieving top performance (AUC = 0.79, composite score = 0.76), outperforming the 2024 CHAIMELEON challenge winners. Counterfactual heatmaps reliably highlighted lesions within segmented regions, enhancing model interpretability. In a prospective multi-center in-silico trial with 20 clinicians, AI assistance increased diagnostic accuracy from 0.72 to 0.77 and Cohen's kappa from 0.43 to 0.53, while reducing review time per case by 40%. These results demonstrate that anatomy-aware foundation models with counterfactual explainability can enable accurate, interpretable, and efficient PCa risk assessment, supporting their potential use as virtual biopsies in clinical practice.
- Abstract(参考訳): MRIによる前立腺癌(PCa)のリスク階層化のための,完全に自動化された,解剖学的に指導されたディープラーニングパイプラインを提案する。
パイプラインは、前立腺とそのゾーンを軸方向のT2強調MRI上にセグメント化するnnU-Netモジュール、UMedPT Swin Transformer基盤モデルに基づく分類モジュール、オプションの解剖学的先行データと臨床データで3Dパッチに微調整された分類モジュール、決定駆動画像領域をローカライズする対物熱マップを生成するVAE-GANフレームワークの3つの重要なコンポーネントを統合する。
このシステムは、セグメンテーションのための1500 PI-CAIケースと、分類のためのCHAIMELEONチャレンジからのメタデータ(70%のトレーニング、10%のバリデーション、20%のテスト)を備えた617のバイパラメトリックMRIを用いて開発された。
セグメンテーションはDiceスコアが0.95(gland)、0.94(peripheral zone)、0.92(transition zone)となる。
組み込まれた腺前駆体はAUCを0.69から0.72に改善し、3段階のアンサンブルは最高成績(AUC=0.79、複合スコア=0.76)を達成し、2024のCHAIMELEON優勝者を上回った。
カウンターファクトのヒートマップは、セグメント化された領域内の病変を確実に強調し、モデルの解釈可能性を高めた。
20人の臨床医による多施設での臨床試験では、AIアシストは診断精度を0.72から0.77に、CohenのKappaは0.43から0.53に向上し、1件あたりのレビュー時間を40%削減した。
これらの結果から, 解剖学的基盤モデルによる臨床実習における仮想生検の有用性を裏付け, 精度, 解釈可能, 効率的なPCaリスク評価が可能であることが示唆された。
関連論文リスト
- A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI) [0.0]
全体拡散強調MRI(WB-DWI)のADC値とTotal Diffusion Volume(TDV)が癌画像バイオマーカーとして認識されている。
最初のステップとして, 骨格, 隣接する内臓器(肝, 脾臓, 膀胱, 腎臓) および脊髄の高速かつ再現可能な確率マップを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-26T17:03:46Z) - Multi-centric AI Model for Unruptured Intracranial Aneurysm Detection and Volumetric Segmentation in 3D TOF-MRI [6.397650339311053]
我々は3DTOF-MRIで未破裂脳動脈瘤(UICA)の検出と分節を併用したオープンソースのnnU-NetベースのAIモデルを開発した。
4つの異なるトレーニングデータセットが作成され、nnU-Netフレームワークがモデル開発に使用された。
一次モデルは85%の感度と0.23FP/ケースレートを示し、ADAM-challengeの勝者(61%)と、ADAMデータでトレーニングされたnnU-Net(51%)を感度で上回った。
論文 参考訳(メタデータ) (2024-08-30T08:57:04Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
本研究では,3次元MRIを用いたアルツハイマー病診断の革新的手法を提案する。
提案手法では,2次元CNNがボリューム表現を抽出できるソフトアテンション機構を採用している。
ボクセルレベルの精度では、どの領域に注意が払われているかを同定し、これらの支配的な脳領域を同定する。
論文 参考訳(メタデータ) (2024-07-02T16:44:00Z) - TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI [59.86827659781022]
nnU-Netモデル(TotalSegmentator)をMRIおよび80原子構造で訓練した。
予測されたセグメンテーションと専門家基準セグメンテーションとの間には,ディススコアが算出され,モデル性能が評価された。
オープンソースで使いやすいモデルは、80構造の自動的で堅牢なセグメンテーションを可能にする。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge [44.76736949127792]
我々はBraTS 2023の頭蓋内髄膜腫チャレンジの設計と結果について述べる。
BraTS髄膜腫チャレンジ(BraTS Meningioma Challenge)は、髄膜腫に焦点を当てた以前のBraTSグリオーマチャレンジとは異なる。
上層部は腫瘍,腫瘍コア,腫瘍全体の拡張のために0.976,0.976,0.964の病変中央値類似係数(DSC)を有していた。
論文 参考訳(メタデータ) (2024-05-16T03:23:57Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Deep Learning (DL)-based Automatic Segmentation of the Internal Pudendal
Artery (IPA) for Reduction of Erectile Dysfunction in Definitive Radiotherapy
of Localized Prostate Cancer [2.3547204612718393]
深層学習に基づくIPAのための自己分離モデルを提案する。
このモデルは、臨床実習における変化に対応するために、入力画像のモダリティとして、CTとMRIとCTのみを使用します。
提案モデルでは, セグメンテーションの均一性を向上させるため, 高品質なIPA輪郭が得られた。
論文 参考訳(メタデータ) (2023-02-03T02:00:06Z) - Systematic Clinical Evaluation of A Deep Learning Method for Medical
Image Segmentation: Radiosurgery Application [48.89674088331313]
3次元医用画像分割作業において,Deep Learning (DL) 手法を体系的に評価した。
本手法は放射線外科治療プロセスに統合され,臨床ワークフローに直接影響を及ぼす。
論文 参考訳(メタデータ) (2021-08-21T16:15:40Z) - Deep Learning for fully automatic detection, segmentation, and Gleason
Grade estimation of prostate cancer in multiparametric Magnetic Resonance
Images [0.731365367571807]
本稿では,PCa-suspect 患者から前立腺 mpMRI を抽出するDeep Learning に基づく完全自動システムを提案する。
PCaの病変を特定し、それらを分類し、最も可能性の高いGleason grade group(GGG)を予測する。
ProstateXトレーニングシステムのコードはhttps://github.com/OscarPellicer/prostate_lesion_detection.comで公開されている。
論文 参考訳(メタデータ) (2021-03-23T16:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。