An Automated Classifier of Harmful Brain Activities for Clinical Usage Based on a Vision-Inspired Pre-trained Framework
- URL: http://arxiv.org/abs/2507.08874v1
- Date: Thu, 10 Jul 2025 02:22:13 GMT
- Title: An Automated Classifier of Harmful Brain Activities for Clinical Usage Based on a Vision-Inspired Pre-trained Framework
- Authors: Yulin Sun, Xiaopeng Si, Runnan He, Xiao Hu, Peter Smielewski, Wenlong Wang, Xiaoguang Tong, Wei Yue, Meijun Pang, Kuo Zhang, Xizi Song, Dong Ming, Xiuyun Liu,
- Abstract summary: VIPEEGNet was developed and validated using EEGs recorded from Massachusetts General Hospital/Harvard Medical School.<n>For multi classification, the sensitivity of VIPEEGNET for the six categories ranges from 36.8% to 88.2%.
- Score: 4.264452248986976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Timely identification of harmful brain activities via electroencephalography (EEG) is critical for brain disease diagnosis and treatment, which remains limited application due to inter-rater variability, resource constraints, and poor generalizability of existing artificial intelligence (AI) models. In this study, a convolutional neural network model, VIPEEGNet, was developed and validated using EEGs recorded from Massachusetts General Hospital/Harvard Medical School. The VIPEEGNet was developed and validated using two independent datasets, collected between 2006 and 2020. The development cohort included EEG recordings from 1950 patients, with 106,800 EEG segments annotated by at least one experts (ranging from 1 to 28). The online testing cohort consisted of EEG segments from a subset of an additional 1,532 patients, each annotated by at least 10 experts. For the development cohort (n=1950), the VIPEEGNet achieved high accuracy, with an AUROC for binary classification of seizure, LPD, GPD, LRDA, GRDA, and "other" categories at 0.972 (95% CI, 0.957-0.988), 0.962 (95% CI, 0.954-0.970), 0.972 (95% CI, 0.960-0.984), 0.938 (95% CI, 0.917-0.959), 0.949 (95% CI, 0.941-0.957), and 0.930 (95% CI, 0.926-0.935). For multi classification, the sensitivity of VIPEEGNET for the six categories ranges from 36.8% to 88.2% and the precision ranges from 55.6% to 80.4%, and performance similar to human experts. Notably, the external validation showed Kullback-Leibler Divergence (KLD)of 0.223 and 0.273, ranking top 2 among the existing 2,767 competing algorithms, while we only used 2.8% of the parameters of the first-ranked algorithm.
Related papers
- Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment [3.5408411348831232]
We present a fully automated, anatomically guided deep learning pipeline for prostate cancer (PCa) risk stratification using routine MRI.<n>The pipeline integrates three key components: an nnU-Net module for segmenting the prostate gland and its zones on axial T2-weighted MRI; a classification module based on the DiceedPT Swin Transformer foundation model, fine-tuned on 3D patches with optional anatomical priors and clinical data; and a VAE-GAN framework for generating counterfactual heatmaps that localize decision-driving image regions.
arXiv Detail & Related papers (2025-05-23T14:40:09Z) - Predicting Length of Stay in Neurological ICU Patients Using Classical Machine Learning and Neural Network Models: A Benchmark Study on MIMIC-IV [49.1574468325115]
This study explores multiple ML approaches for predicting LOS in ICU specifically for the patients with neurological diseases based on the MIMIC-IV dataset.<n>The evaluated models include classic ML algorithms (K-Nearest Neighbors, Random Forest, XGBoost and CatBoost) and Neural Networks (LSTM, BERT and Temporal Fusion Transformer)
arXiv Detail & Related papers (2025-05-23T14:06:42Z) - Artificial Intelligence-Based Triaging of Cutaneous Melanocytic Lesions [0.8864540224289991]
Pathologists are facing an increasing workload due to a growing volume of cases and the need for more comprehensive diagnoses.
We developed an artificial intelligence (AI) model for triaging cutaneous melanocytic lesions based on whole slide images.
arXiv Detail & Related papers (2024-10-14T13:49:04Z) - Advanced Predictive Modeling for Enhanced Mortality Prediction in ICU Stroke Patients Using Clinical Data [0.0]
Stroke is second-leading cause of disability and death among adults.
Approximately 17 million people suffer from a stroke annually, with about 85% being ischemic strokes.
We developed a deep learning model to assess mortality risk and implemented several baseline machine learning models for comparison.
arXiv Detail & Related papers (2024-07-19T11:17:42Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
Deep-learning algorithm to predict coronary artery calcium (CAC) score was developed on 460 chest x-ray.
The diagnostic accuracy of the AICAC model assessed by the area under the curve (AUC) was the primary outcome.
arXiv Detail & Related papers (2024-03-27T16:56:14Z) - A Generalizable Artificial Intelligence Model for COVID-19
Classification Task Using Chest X-ray Radiographs: Evaluated Over Four
Clinical Datasets with 15,097 Patients [6.209420804714487]
The generalizability of the trained model was retrospectively evaluated using four different real-world clinical datasets.
The AI model trained using a single-source clinical dataset achieved an AUC of 0.82 when applied to the internal temporal test set.
An AUC of 0.79 was achieved when applied to a multi-institutional COVID-19 dataset collected by the Medical Imaging and Data Resource Center.
arXiv Detail & Related papers (2022-10-04T04:12:13Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - Efficient and Visualizable Convolutional Neural Networks for COVID-19
Classification Using Chest CT [0.0]
COVID-19 has infected over 65 million people worldwide as of December 4, 2020.
Deep learning has emerged as a promising diagnosis technique.
In this paper, we evaluate and compare 40 different convolutional neural network architectures for COVID-19 diagnosis.
arXiv Detail & Related papers (2020-12-22T07:09:48Z) - Dual-Sampling Attention Network for Diagnosis of COVID-19 from Community
Acquired Pneumonia [46.521323145636906]
We develop a dual-sampling attention network to automatically diagnose COVID-19 from the community acquired pneumonia (CAP) in chest computed tomography (CT)
In particular, we propose a novel online attention module with a 3D convolutional network (CNN) to focus on the infection regions in lungs when making decisions of diagnoses.
Our algorithm can identify the COVID-19 images with the area under the receiver operating characteristic curve (AUC) value of 0.944, accuracy of 87.5%, sensitivity of 86.9%, specificity of 90.1%, and F1-score of 82.0%.
arXiv Detail & Related papers (2020-05-06T09:56:51Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
The proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions.
The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities.
Evaluation of the algorithm is reported on CTs of 200 participants (100 COVID-19 confirmed patients and 100 healthy controls) from institutions from Canada, Europe and the United States.
arXiv Detail & Related papers (2020-04-02T21:49:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.