Simulating Three-dimensional Turbulence with Physics-informed Neural Networks
- URL: http://arxiv.org/abs/2507.08972v1
- Date: Fri, 11 Jul 2025 19:02:52 GMT
- Title: Simulating Three-dimensional Turbulence with Physics-informed Neural Networks
- Authors: Sifan Wang, Shyam Sankaran, Panos Stinis, Paris Perdikaris,
- Abstract summary: Turbulent fluid flows are among the most computationally demanding problems in science.<n>We show that appropriately designed PINNs can successfully simulate fully turbulent flows in both two and three dimensions.<n>Our results demonstrate that neural equation solvers can handle complex chaotic systems.
- Score: 5.7590724453740965
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Turbulent fluid flows are among the most computationally demanding problems in science, requiring enormous computational resources that become prohibitive at high flow speeds. Physics-informed neural networks (PINNs) represent a radically different approach that trains neural networks directly from physical equations rather than data, offering the potential for continuous, mesh-free solutions. Here we show that appropriately designed PINNs can successfully simulate fully turbulent flows in both two and three dimensions, directly learning solutions to the fundamental fluid equations without traditional computational grids or training data. Our approach combines several algorithmic innovations including adaptive network architectures, causal training, and advanced optimization methods to overcome the inherent challenges of learning chaotic dynamics. Through rigorous validation on challenging turbulence problems, we demonstrate that PINNs accurately reproduce key flow statistics including energy spectra, kinetic energy, enstrophy, and Reynolds stresses. Our results demonstrate that neural equation solvers can handle complex chaotic systems, opening new possibilities for continuous turbulence modeling that transcends traditional computational limitations.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology [0.0]
We propose an extension of Latent Dynamics Networks (LDNets) to create parameterized space-time surrogate models for multiscale and multiphysics sets of highly nonlinear differential equations on complex geometries.
LFLDNets employ a neurologically-inspired, sparse liquid neural network for temporal dynamics, relaxing the requirement of a numerical solver for time advancement and leading to superior performance in terms of parameters, accuracy, efficiency and learned trajectories.
arXiv Detail & Related papers (2024-08-19T09:14:25Z) - Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows [3.5707423185282656]
Physics-informed neural networks (PINNs) have gained significant prominence as a powerful tool in the field of scientific computing and simulations.
We propose to combine the power of neural networks with the dynamics imposed by the discretized differential equations.
By discretizing the governing equations, the PINN learns to account for the discontinuities and accurately capture the underlying relationships between inputs and outputs.
arXiv Detail & Related papers (2024-04-04T06:56:32Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Hybrid quantum physics-informed neural networks for simulating computational fluid dynamics in complex shapes [37.69303106863453]
We present a hybrid quantum physics-informed neural network that simulates laminar fluid flows in 3D Y-shaped mixers.
Our approach combines the expressive power of a quantum model with the flexibility of a physics-informed neural network, resulting in a 21% higher accuracy compared to a purely classical neural network.
arXiv Detail & Related papers (2023-04-21T20:49:29Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Transfer Learning with Physics-Informed Neural Networks for Efficient
Simulation of Branched Flows [1.1470070927586016]
Physics-Informed Neural Networks (PINNs) offer a promising approach to solving differential equations.
We adopt a recently developed transfer learning approach for PINNs and introduce a multi-head model.
We show that our methods provide significant computational speedups in comparison to standard PINNs trained from scratch.
arXiv Detail & Related papers (2022-11-01T01:50:00Z) - Neural Galerkin Schemes with Active Learning for High-Dimensional
Evolution Equations [44.89798007370551]
This work proposes Neural Galerkin schemes based on deep learning that generate training data with active learning for numerically solving high-dimensional partial differential equations.
Neural Galerkin schemes build on the Dirac-Frenkel variational principle to train networks by minimizing the residual sequentially over time.
Our finding is that the active form of gathering training data of the proposed Neural Galerkin schemes is key for numerically realizing the expressive power of networks in high dimensions.
arXiv Detail & Related papers (2022-03-02T19:09:52Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Physics-informed deep learning for incompressible laminar flows [13.084113582897965]
We propose a mixed-variable scheme of physics-informed neural network (PINN) for fluid dynamics.
A parametric study indicates that the mixed-variable scheme can improve the PINN trainability and the solution accuracy.
arXiv Detail & Related papers (2020-02-24T21:51:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.