Transfer Learning with Physics-Informed Neural Networks for Efficient
Simulation of Branched Flows
- URL: http://arxiv.org/abs/2211.00214v1
- Date: Tue, 1 Nov 2022 01:50:00 GMT
- Title: Transfer Learning with Physics-Informed Neural Networks for Efficient
Simulation of Branched Flows
- Authors: Rapha\"el Pellegrin, Blake Bullwinkel, Marios Mattheakis, Pavlos
Protopapas
- Abstract summary: Physics-Informed Neural Networks (PINNs) offer a promising approach to solving differential equations.
We adopt a recently developed transfer learning approach for PINNs and introduce a multi-head model.
We show that our methods provide significant computational speedups in comparison to standard PINNs trained from scratch.
- Score: 1.1470070927586016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Neural Networks (PINNs) offer a promising approach to
solving differential equations and, more generally, to applying deep learning
to problems in the physical sciences. We adopt a recently developed transfer
learning approach for PINNs and introduce a multi-head model to efficiently
obtain accurate solutions to nonlinear systems of ordinary differential
equations with random potentials. In particular, we apply the method to
simulate stochastic branched flows, a universal phenomenon in random wave
dynamics. Finally, we compare the results achieved by feed forward and
GAN-based PINNs on two physically relevant transfer learning tasks and show
that our methods provide significant computational speedups in comparison to
standard PINNs trained from scratch.
Related papers
- Towards Model Discovery Using Domain Decomposition and PINNs [44.99833362998488]
The study evaluates the performance of two approaches, namely Physics-Informed Neural Networks (PINNs) and Finite Basis Physics-Informed Neural Networks (FBPINNs)
We find a better performance for the FBPINN approach compared to the vanilla PINN approach, even in cases with data from only a quasi-stationary time domain with few dynamics.
arXiv Detail & Related papers (2024-10-02T14:38:37Z) - Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows [3.5707423185282656]
Physics-informed neural networks (PINNs) have gained significant prominence as a powerful tool in the field of scientific computing and simulations.
We propose to combine the power of neural networks with the dynamics imposed by the discretized differential equations.
By discretizing the governing equations, the PINN learns to account for the discontinuities and accurately capture the underlying relationships between inputs and outputs.
arXiv Detail & Related papers (2024-04-04T06:56:32Z) - Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
This paper proposes a meshless deep learning algorithm, enriched physics-informed neural networks (EPINNs) to solve dynamic Poisson-Nernst-Planck (PNP) equations.
The EPINNs takes the traditional physics-informed neural networks as the foundation framework, and adds the adaptive loss weight to balance the loss functions.
Numerical results indicate that the new method has better applicability than traditional numerical methods in solving such coupled nonlinear systems.
arXiv Detail & Related papers (2024-02-01T02:57:07Z) - Burgers' pinns with implicit euler transfer learning [0.0]
The Burgers equation is a well-established test case in the computational modeling of several phenomena.
We present the application of Physics-Informed Neural Networks (PINNs) with an implicit Euler transfer learning approach to solve the Burgers equation.
arXiv Detail & Related papers (2023-10-23T20:15:45Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - One-Shot Transfer Learning of Physics-Informed Neural Networks [2.6084034060847894]
We present a framework for transfer learning PINNs that results in one-shot inference for linear systems of both ordinary and partial differential equations.
This means that highly accurate solutions to many unknown differential equations can be obtained instantaneously without retraining an entire network.
arXiv Detail & Related papers (2021-10-21T17:14:58Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.