ALIGN: Prompt-based Attribute Alignment for Reliable, Responsible, and Personalized LLM-based Decision-Making
- URL: http://arxiv.org/abs/2507.09037v1
- Date: Fri, 11 Jul 2025 21:33:38 GMT
- Title: ALIGN: Prompt-based Attribute Alignment for Reliable, Responsible, and Personalized LLM-based Decision-Making
- Authors: Bharadwaj Ravichandran, David Joy, Paul Elliott, Brian Hu, Jadie Adams, Christopher Funk, Emily Veenhuis, Anthony Hoogs, Arslan Basharat,
- Abstract summary: We develop ALIGN, a system for dynamic personalization of large language models (LLMs)<n>Key features of our system include robust configuration management, structured output generation with reasoning, and several algorithm implementations with swappable LLM backbones.<n>The entire ALIGN framework is open source and will enable new research on reliable, responsible, and personalized LLM-based decision-makers.
- Score: 10.558361310945164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly being used as decision aids. However, users have diverse values and preferences that can affect their decision-making, which requires novel methods for LLM alignment and personalization. Existing LLM comparison tools largely focus on benchmarking tasks, such as knowledge-based question answering. In contrast, our proposed ALIGN system focuses on dynamic personalization of LLM-based decision-makers through prompt-based alignment to a set of fine-grained attributes. Key features of our system include robust configuration management, structured output generation with reasoning, and several algorithm implementations with swappable LLM backbones, enabling different types of analyses. Our user interface enables a qualitative, side-by-side comparison of LLMs and their alignment to various attributes, with a modular backend for easy algorithm integration. Additionally, we perform a quantitative analysis comparing alignment approaches in two different domains: demographic alignment for public opinion surveys and value alignment for medical triage decision-making. The entire ALIGN framework is open source and will enable new research on reliable, responsible, and personalized LLM-based decision-makers.
Related papers
- Feature Engineering for Agents: An Adaptive Cognitive Architecture for Interpretable ML Monitoring [2.1205272468688574]
We propose a cognitive architecture for ML monitoring that applies feature engineering principles to agents based on Large Language Models.<n>Decision Procedure module simulates feature engineering through three key steps: Refactor, Break Down, and Compile.<n> Experiments using multiple LLMs demonstrate the efficacy of our approach, achieving significantly higher accuracy compared to various baselines.
arXiv Detail & Related papers (2025-06-11T13:48:25Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - BLADE: Benchmark suite for LLM-driven Automated Design and Evolution of iterative optimisation heuristics [2.2485774453793037]
BLADE is a framework for benchmarking LLM-driven AAD methods in a continuous black-box optimisation context.<n>It integrates benchmark problems with instance generators and textual descriptions aimed at capability-focused testing, such as specialisation and information exploitation.<n> BLADE provides an out-of-the-box' solution to systematically evaluate LLM-driven AAD approaches.
arXiv Detail & Related papers (2025-04-28T18:34:09Z) - Measuring What Makes You Unique: Difference-Aware User Modeling for Enhancing LLM Personalization [68.79814761867314]
We propose Difference-aware Personalization Learning (DPL) to enhance Large Language Models (LLMs) personalization.<n>DPL strategically selects representative users for comparison and establishes a structured standard to extract task-relevant differences.<n>Experiments on real-world datasets demonstrate that DPL significantly enhances LLM personalization.
arXiv Detail & Related papers (2025-03-04T09:53:26Z) - LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
We introduce LLM-Lasso, a framework that leverages large language models (LLMs) to guide feature selection in Lasso regression.<n>LLMs generate penalty factors for each feature, which are converted into weights for the Lasso penalty using a simple, tunable model.<n>Features identified as more relevant by the LLM receive lower penalties, increasing their likelihood of being retained in the final model.
arXiv Detail & Related papers (2025-02-15T02:55:22Z) - Systematic Analysis of LLM Contributions to Planning: Solver, Verifier, Heuristic [6.687149103409949]
We provide a systematic analysis of how large language models (LLMs) contribute to solving planning problems.<n>Our analysis reveals that although it is difficult for LLMs to generate correct plans out-of-the-box, LLMs are much better at providing feedback signals to intermediate/incomplete solutions.
arXiv Detail & Related papers (2024-12-12T18:16:46Z) - Embodied Agent Interface: Benchmarking LLMs for Embodied Decision Making [85.24399869971236]
We aim to evaluate Large Language Models (LLMs) for embodied decision making.<n>Existing evaluations tend to rely solely on a final success rate.<n>We propose a generalized interface (Embodied Agent Interface) that supports the formalization of various types of tasks.
arXiv Detail & Related papers (2024-10-09T17:59:00Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
Large language models (LLMs) have been widely adopted due to their remarkable performance across various applications.<n>These individual LLMs show limitations in generalization and performance on complex tasks due to inherent training biases, model size constraints, and the quality or diversity of pre-training datasets.<n>We introduce SelectLLM, which efficiently directs input queries to the most suitable subset of LLMs from a large pool.
arXiv Detail & Related papers (2024-08-16T06:11:21Z) - PiCO: Peer Review in LLMs based on the Consistency Optimization [48.48819141999387]
We use peer-review mechanisms to measure large language models (LLMs) automatically.<n>We formalize it as a constrained optimization problem, intending to maximize the consistency of each LLM's capabilities and scores.<n>We propose three metrics called PEN, CIN, and LIS to evaluate the gap in aligning human rankings.
arXiv Detail & Related papers (2024-02-02T18:49:26Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.