論文の概要: From Physics to Foundation Models: A Review of AI-Driven Quantitative Remote Sensing Inversion
- arxiv url: http://arxiv.org/abs/2507.09081v1
- Date: Fri, 11 Jul 2025 23:57:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:22.277551
- Title: From Physics to Foundation Models: A Review of AI-Driven Quantitative Remote Sensing Inversion
- Title(参考訳): 物理から基礎モデルへ:AI駆動型定量的リモートセンシングインバージョン
- Authors: Zhenyu Yu, Mohd Yamani Idna Idris, Hua Wang, Pei Wang, Junyi Chen, Kun Wang,
- Abstract要約: 定量的リモートセンシングインバージョンは、バイオマス、植生指標、衛星観測からの蒸発散などの連続した表面変数を推定することを目的としている。
従来の物理に基づくパラダイムは、データ駆動および基礎モデル(FM)ベースのアプローチに道を譲っている。
- 参考スコア(独自算出の注目度): 10.054868326253784
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantitative remote sensing inversion aims to estimate continuous surface variables-such as biomass, vegetation indices, and evapotranspiration-from satellite observations, supporting applications in ecosystem monitoring, carbon accounting, and land management. With the evolution of remote sensing systems and artificial intelligence, traditional physics-based paradigms are giving way to data-driven and foundation model (FM)-based approaches. This paper systematically reviews the methodological evolution of inversion techniques, from physical models (e.g., PROSPECT, SCOPE, DART) to machine learning methods (e.g., deep learning, multimodal fusion), and further to foundation models (e.g., SatMAE, GFM, mmEarth). We compare the modeling assumptions, application scenarios, and limitations of each paradigm, with emphasis on recent FM advances in self-supervised pretraining, multi-modal integration, and cross-task adaptation. We also highlight persistent challenges in physical interpretability, domain generalization, limited supervision, and uncertainty quantification. Finally, we envision the development of next-generation foundation models for remote sensing inversion, emphasizing unified modeling capacity, cross-domain generalization, and physical interpretability.
- Abstract(参考訳): リモートセンシングの定量的インバージョンは、バイオマス、植生指標、衛星観測からの蒸発散などの連続した表面変数を推定することを目的としており、生態系モニタリング、炭素会計、土地管理における応用を支援している。
リモートセンシングシステムと人工知能の進化により、従来の物理ベースのパラダイムは、データ駆動および基礎モデル(FM)ベースのアプローチに道を譲っている。
本稿では,物理モデル(PROSPECT,SCOPE,DART)から機械学習手法(深層学習,マルチモーダル融合),さらに基礎モデル(SatMAE,GFM,mEarth)まで,インバージョン技術の方法論的進化を体系的に検討する。
我々は、自己教師付き事前学習、マルチモーダル統合、マルチタスク適応における最近のFM進歩に重点を置いて、各パラダイムのモデリング仮定、アプリケーションシナリオ、および制限を比較した。
また、物理的解釈可能性、領域の一般化、限定的な監督、不確実性定量化における永続的な課題も強調する。
最後に、リモートセンシングインバージョンのための次世代基盤モデルの開発を構想し、統一モデリング能力、ドメイン間一般化、物理的解釈性を強調した。
関連論文リスト
- Foundation Models and Transformers for Anomaly Detection: A Survey [2.3264194695971656]
調査では、VADメソッドを再構築ベース、機能ベース、ゼロ/フェーショットアプローチに分類した。
トランスフォーマーとファンデーションモデルは、より堅牢で、解釈可能で、スケーラブルな異常検出ソリューションを可能にする。
論文 参考訳(メタデータ) (2025-07-21T12:01:04Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
異常検出(AD)は、サイバーセキュリティ、金融、医療、工業製造など、さまざまな分野において重要な役割を担っている。
近年のディープラーニング,特に拡散モデル(DM)の進歩は,大きな関心を集めている。
この調査は、研究者や実践者が様々なアプリケーションにまたがる革新的なADソリューションにDMを利用することをガイドすることを目的としている。
論文 参考訳(メタデータ) (2025-06-11T03:29:18Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
我々は、一貫した拡散に基づく世界モデルを学習する上で重要なボトルネックは、最適下予測能力にあると主張している。
本稿では,拡散に基づく世界モデリングフレームワークであるForesight Diffusion(ForeDiff)を提案する。
論文 参考訳(メタデータ) (2025-05-22T10:01:59Z) - Modèles de Substitution pour les Modèles à base d'Agents : Enjeux, Méthodes et Applications [0.0]
エージェントベースモデル(ABM)は、局所的な相互作用から生じる創発的な現象を研究するために広く用いられている。
ABMの複雑さは、リアルタイム意思決定と大規模シナリオ分析の可能性を制限する。
これらの制限に対処するため、サロゲートモデルはスパースシミュレーションデータから近似を学習することで効率的な代替手段を提供する。
論文 参考訳(メタデータ) (2025-05-17T08:55:33Z) - PyTDC: A multimodal machine learning training, evaluation, and inference platform for biomedical foundation models [59.17570021208177]
PyTDCは、マルチモーダルな生物学的AIモデルのための合理化されたトレーニング、評価、推論ソフトウェアを提供する機械学習プラットフォームである。
本稿では、PyTDCのアーキテクチャの構成要素と、我々の知る限り、導入したシングルセルドラッグターゲットMLタスクにおける第一種ケーススタディについて論じる。
論文 参考訳(メタデータ) (2025-05-08T18:15:38Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,タスク固有の精度を向上するファインチューニング,倫理的コヒーレンスと人間の嗜好との整合性を保証するアライメント,報酬設計の課題によらず多段階の推論を進める推論,統合と適応の5つのパラダイムを体系的に追跡したPoLMの総合的な調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - A Survey of World Models for Autonomous Driving [63.33363128964687]
自律運転の最近の進歩は、堅牢な世界モデリングの進歩によって推進されている。
世界モデルは、マルチセンサーデータ、セマンティックキュー、時間ダイナミクスを統合する駆動環境の高忠実度表現を提供する。
本稿では、自律運転の世界モデルにおける最近の進歩を体系的にレビューする。
論文 参考訳(メタデータ) (2025-01-20T04:00:02Z) - Predictive Modeling, Pattern Recognition, and Spatiotemporal Representations of Plant Growth in Simulated and Controlled Environments: A Comprehensive Review [0.0]
本稿では,最先端の予測パターン認識技術について概説する。
植物形質の確率論的モデリングと動的環境相互作用の統合に着目した。
主なトピックは、予測タスクのための回帰とニューラルネットワークベースの表現モデルだ。
論文 参考訳(メタデータ) (2024-12-13T20:22:35Z) - Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - When Geoscience Meets Foundation Models: Towards General Geoscience Artificial Intelligence System [6.445323648941926]
地球科学基礎モデル(Geoscience foundation model, GFMs)は、地球系の力学のシミュレーションと理解を強化するために、広範な学際データを統合するパラダイムシフトソリューションである。
GFMのユニークな長所は、フレキシブルなタスク仕様、多様な入出力能力、マルチモーダルな知識表現である。
このレビューは、先進的なAI技術と地球科学の交差点における未解決の機会を強調した、新興の地球科学研究パラダイムの包括的概要を提供する。
論文 参考訳(メタデータ) (2023-09-13T08:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。