Queue up for takeoff: a transferable deep learning framework for flight delay prediction
- URL: http://arxiv.org/abs/2507.09084v1
- Date: Sat, 12 Jul 2025 00:02:40 GMT
- Title: Queue up for takeoff: a transferable deep learning framework for flight delay prediction
- Authors: Nnamdi Daniel Aghanya, Ta Duong Vu, Amaƫlle Diop, Charlotte Deville, Nour Imane Kerroumi, Irene Moulitsas, Jun Li, Desmond Bisandu,
- Abstract summary: This paper introduces a novel approach that combines Queue-Theory with a simple attention model, referred to as the Queue-Theory SimAM (QT-SimAM)<n>The proposed model's ability to forecast delays with high accuracy across different networks can help reduce passenger anxiety and improve operational decision-making.
- Score: 2.1999538908344283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Flight delays are a significant challenge in the aviation industry, causing major financial and operational disruptions. To improve passenger experience and reduce revenue loss, flight delay prediction models must be both precise and generalizable across different networks. This paper introduces a novel approach that combines Queue-Theory with a simple attention model, referred to as the Queue-Theory SimAM (QT-SimAM). To validate our model, we used data from the US Bureau of Transportation Statistics, where our proposed QT-SimAM (Bidirectional) model outperformed existing methods with an accuracy of 0.927 and an F1 score of 0.932. To assess transferability, we tested the model on the EUROCONTROL dataset. The results demonstrated strong performance, achieving an accuracy of 0.826 and an F1 score of 0.791. Ultimately, this paper outlines an effective, end-to-end methodology for predicting flight delays. The proposed model's ability to forecast delays with high accuracy across different networks can help reduce passenger anxiety and improve operational decision-making
Related papers
- Urban Traffic Forecasting with Integrated Travel Time and Data Availability in a Conformal Graph Neural Network Framework [0.6554326244334868]
State-of-the-art models often struggle to consider the data in the best way possible.
We propose a novel framework to incorporate travel times between stations into a weighted adjacency matrix of a Graph Neural Network architecture.
arXiv Detail & Related papers (2024-07-17T01:11:07Z) - Airport Delay Prediction with Temporal Fusion Transformers [24.280246809961945]
This study proposes to apply the novel Temporal Fusion Transformer model and predict numerical airport arrival delays at quarter hour level for U.S. top 30 airports.
Inputs to our model include airport demand and capacity forecasts, historic airport operation efficiency information, airport wind and visibility conditions, as well as enroute weather and traffic conditions.
arXiv Detail & Related papers (2024-05-14T03:27:15Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Machine Learning-Enhanced Aircraft Landing Scheduling under
Uncertainties [14.474624795989824]
An innovative machine learning (ML)-enhanced landing scheduling methodology is proposed, aiming to improve automation and safety.
ML predictions are then integrated as safety constraints in a time-constrained traveling salesman problem formulation.
Case studies demonstrate an average 17.2% reduction in total landing time compared to the First-Come-First-Served (FCFS) rule.
arXiv Detail & Related papers (2023-11-27T17:50:14Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
We present FengWu, an advanced data-driven global medium-range weather forecast system based on Artificial Intelligence (AI)
FengWu is able to accurately reproduce the atmospheric dynamics and predict the future land and atmosphere states at 37 vertical levels on a 0.25deg latitude-longitude resolution.
The results suggest that FengWu can significantly improve the forecast skill and extend the skillful global medium-range weather forecast out to 10.75 days lead.
arXiv Detail & Related papers (2023-04-06T09:16:39Z) - Fast and Accurate Error Simulation for CNNs against Soft Errors [64.54260986994163]
We present a framework for the reliability analysis of Conal Neural Networks (CNNs) via an error simulation engine.
These error models are defined based on the corruption patterns of the output of the CNN operators induced by faults.
We show that our methodology achieves about 99% accuracy of the fault effects w.r.t. SASSIFI, and a speedup ranging from 44x up to 63x w.r.t.FI, that only implements a limited set of error models.
arXiv Detail & Related papers (2022-06-04T19:45:02Z) - Data-Efficient Modeling for Precise Power Consumption Estimation of
Quadrotor Operations Using Ensemble Learning [3.722516004544342]
Electric Take-Off and Landing (eVTOL) aircraft is considered as the major aircraft type in the emerging urban air mobility.
In this study, a framework for power consumption modeling of eVTOL aircraft was established.
We employed an ensemble learning method, namely stacking, to develop a data-driven model using flight records of three different types of quadrotors.
arXiv Detail & Related papers (2022-05-23T02:16:43Z) - Multi-Airport Delay Prediction with Transformers [0.0]
Temporal Fusion Transformer (TFT) was proposed to predict departure and arrival delays simultaneously for multiple airports.
This approach can capture complex temporal dynamics of the inputs known at the time of prediction and then forecast selected delay metrics up to four hours into the future.
arXiv Detail & Related papers (2021-11-04T21:58:11Z) - T$^2$-Net: A Semi-supervised Deep Model for Turbulence Forecasting [65.498967509424]
Air turbulence forecasting can help airlines avoid hazardous turbulence, guide routes that keep passengers safe, maximize efficiency, reduce costs.
Traditional forecasting approaches rely on painstakingly customized turbulence indexes, which are less effective in dynamic and complex weather conditions.
We propose a machine learning based turbulence forecasting system due to two challenges: (1) Complex-temporal correlations, and (2) scarcity, very limited turbulence labels can be obtained.
arXiv Detail & Related papers (2020-10-26T21:14:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.