Urban Traffic Forecasting with Integrated Travel Time and Data Availability in a Conformal Graph Neural Network Framework
- URL: http://arxiv.org/abs/2407.12238v2
- Date: Thu, 3 Oct 2024 04:46:36 GMT
- Title: Urban Traffic Forecasting with Integrated Travel Time and Data Availability in a Conformal Graph Neural Network Framework
- Authors: Mayur Patil, Qadeer Ahmed, Shawn Midlam-Mohler,
- Abstract summary: State-of-the-art models often struggle to consider the data in the best way possible.
We propose a novel framework to incorporate travel times between stations into a weighted adjacency matrix of a Graph Neural Network architecture.
- Score: 0.6554326244334868
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Traffic flow prediction is a big challenge for transportation authorities as it helps plan and develop better infrastructure. State-of-the-art models often struggle to consider the data in the best way possible, as well as intrinsic uncertainties and the actual physics of the traffic. In this study, we propose a novel framework to incorporate travel times between stations into a weighted adjacency matrix of a Graph Neural Network (GNN) architecture with information from traffic stations based on their data availability. To handle uncertainty, we utilized the Adaptive Conformal Prediction (ACP) method that adjusts prediction intervals based on real-time validation residuals. To validate our results, we model a microscopic traffic scenario and perform a Monte-Carlo simulation to get a travel time distribution for a Vehicle Under Test (VUT), and this distribution is compared against the real-world data. Experiments show that the proposed model outperformed the next-best model by approximately 24% in MAE and 8% in RMSE and validation showed the simulated travel time closely matches the 95th percentile of the observed travel time value.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
This study proposes a novel Spatial-temporal Convolutional Network (TL-GPSTGN) based on graph pruning and transfer learning framework.
The results demonstrate the exceptional predictive accuracy of TL-GPSTGN on a single dataset, as well as its robust migration performance across different datasets.
arXiv Detail & Related papers (2024-09-25T00:59:23Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction [32.44888387725925]
The proposed ST-Mamba model is first to leverage the power of spatial-temporal learning in traffic flow prediction without using graph modeling.
The proposed ST-Mamba model achieves a 61.11% improvement in computational speed and increases prediction accuracy by 0.67%.
Experiments with real-world traffic datasets demonstrate that the textsfST-Mamba model sets a new benchmark in traffic flow prediction.
arXiv Detail & Related papers (2024-04-20T03:57:57Z) - Traffic estimation in unobserved network locations using data-driven
macroscopic models [2.3543188414616534]
This paper leverages macroscopic models and multi-source data collected from automatic traffic counters and probe vehicles to accurately estimate traffic flow and travel time in links where these measurements are unavailable.
Because MaTE is grounded in macroscopic flow theory, all parameters and variables are interpretable.
Experiments on synthetic data show that the model can accurately estimate travel time and traffic flow in out-of-sample links.
arXiv Detail & Related papers (2024-01-30T15:21:50Z) - Towards better traffic volume estimation: Jointly addressing the
underdetermination and nonequilibrium problems with correlation-adaptive GNNs [47.18837782862979]
This paper studies two key problems with regard to traffic volume estimation: (1) underdetermined traffic flows caused by undetected movements, and (2) non-equilibrium traffic flows arise from congestion propagation.
We demonstrate a graph-based deep learning method that can offer a data-driven, model-free and correlation adaptive approach to tackle the above issues.
arXiv Detail & Related papers (2023-03-10T02:22:33Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Prediction of Traffic Flow via Connected Vehicles [77.11902188162458]
We propose a Short-term Traffic flow Prediction framework so that transportation authorities take early actions to control flow and prevent congestion.
We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology.
We show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of various events that CV realistically encountered on segments along their trajectory.
arXiv Detail & Related papers (2020-07-10T16:00:44Z) - Large-scale Analysis and Simulation of Traffic Flow using Markov Models [0.0]
A mathematically rigorous model that can be used for traffic analysis was proposed earlier by other researchers.
In this paper, a new parametrization is presented for this model by introducing the concept of two-dimensional stationary distribution.
We have run simulations in medium and large scales and both the model and estimation procedure, based on artificial and real datasets, have been proved satisfactory.
arXiv Detail & Related papers (2020-07-06T12:31:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.