Position Paper: Programming Language Techniques for Bridging LLM Code Generation Semantic Gaps
- URL: http://arxiv.org/abs/2507.09135v1
- Date: Sat, 12 Jul 2025 04:32:15 GMT
- Title: Position Paper: Programming Language Techniques for Bridging LLM Code Generation Semantic Gaps
- Authors: Yalong Du, Chaozheng Wang, Huaijin Wang,
- Abstract summary: This paper argues that principled integration of Programming Language techniques is essential for bridging semantic gaps in large language models.<n>PL techniques can elevate LLM-generated code from statistical pattern matching to truly reliable and trustworthy levels.
- Score: 3.61356888205659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models have demonstrated remarkable capabilities in automated code generation, yet their statistical nature and black-box characteristics create significant semantic gaps manifested through syntax errors, semantic hallucinations, and reliability concerns. This position paper argues that principled integration of Programming Language (PL) techniques is essential for bridging these gaps. Through structured program representations, formal correctness guarantees, and robust verification mechanisms, PL techniques can elevate LLM-generated code from statistical pattern matching to truly reliable and trustworthy levels. This integration is crucial for developing systems that generate code that is not only functionally correct but also interpretable, verifiable, and ultimately trustworthy.
Related papers
- Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - Type-Constrained Code Generation with Language Models [51.03439021895432]
We introduce a type-constrained decoding approach that leverages type systems to guide code generation.<n>For this purpose, we develop novel prefix automata and a search over inhabitable types, forming a sound approach to enforce well-typedness on LLM-generated code.<n>Our approach reduces compilation errors by more than half and significantly increases functional correctness in code synthesis, translation, and repair tasks.
arXiv Detail & Related papers (2025-04-12T15:03:00Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [24.090719826360342]
We introduce CodeIF, the first benchmark designed to assess the abilities of Large Language Models (LLMs) to adhere to task-oriented instructions within code generation scenarios.<n>We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks.
arXiv Detail & Related papers (2025-02-26T14:19:49Z) - Correctness Assessment of Code Generated by Large Language Models Using Internal Representations [4.32362000083889]
We introduce OPENIA, a novel framework to assess the correctness of code generated by Large Language Models (LLMs)<n>Our empirical analysis reveals that these internal representations encode latent information, which strongly correlates with the correctness of the generated code.<n> OPENIA consistently outperforms baseline models, achieving higher accuracy, precision, recall, and F1-Scores with up to a 2X improvement in standalone code generation.
arXiv Detail & Related papers (2025-01-22T15:04:13Z) - Understanding Defects in Generated Codes by Language Models [0.669087470775851]
This study categorizes and analyzes 367 identified defects from code snippets generated by Large Language Models.
Error categories indicate key areas where LLMs frequently fail, underscoring the need for targeted improvements.
This paper implemented five prompt engineering techniques, including Scratchpad Prompting, Program of Thoughts Prompting, Chain-of-Thought Prompting, Chain-of-Thought Prompting, and Structured Chain-of-Thought Prompting.
arXiv Detail & Related papers (2024-08-23T21:10:09Z) - Towards More Trustworthy and Interpretable LLMs for Code through Syntax-Grounded Explanations [48.07182711678573]
ASTrust generates explanations grounded in the relationship between model confidence and syntactic structures of programming languages.
We develop an automated visualization that illustrates the aggregated model confidence scores superimposed on sequence, heat-map, and graph-based visuals of syntactic structures from ASTs.
arXiv Detail & Related papers (2024-07-12T04:38:28Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
We propose a novel TRansformer-based Attribution framework using Contrastive Embeddings called TRACE.
We show that TRACE significantly improves the ability to attribute sources accurately, making it a valuable tool for enhancing the reliability and trustworthiness of large language models.
arXiv Detail & Related papers (2024-07-06T07:19:30Z) - Synthetic Programming Elicitation for Text-to-Code in Very Low-Resource Programming and Formal Languages [21.18996339478024]
We introduce emphsynthetic programming elicitation and compilation (SPEAC)
SPEAC produces syntactically correct programs more frequently and without sacrificing semantic correctness.
We empirically evaluate the performance of SPEAC in a case study for the UCLID5 formal verification language.
arXiv Detail & Related papers (2024-06-05T22:16:19Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
Large Language Models (LLMs) have achieved remarkable progress in code generation.<n>CodeIP is a novel multi-bit watermarking technique that inserts additional information to preserve provenance details.<n>Experiments conducted on a real-world dataset across five programming languages demonstrate the effectiveness of CodeIP.
arXiv Detail & Related papers (2024-04-24T04:25:04Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
This paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT.
We show that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.
arXiv Detail & Related papers (2023-10-16T05:09:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.