Retrieval-Augmented Recommendation Explanation Generation with Hierarchical Aggregation
- URL: http://arxiv.org/abs/2507.09188v1
- Date: Sat, 12 Jul 2025 08:15:05 GMT
- Title: Retrieval-Augmented Recommendation Explanation Generation with Hierarchical Aggregation
- Authors: Bangcheng Sun, Yazhe Chen, Jilin Yang, Xiaodong Li, Hui Li,
- Abstract summary: Explainable Recommender System (ExRec) provides transparency to the recommendation process, increasing users' trust and boosting the operation of online services.<n>Existing LLM-based ExRec models suffer from profile deviation and high retrieval overhead, hindering their deployment.<n>We propose Retrieval-Augmented Recommendation Explanation Generation with Hierarchical Aggregation (REXHA)
- Score: 5.656477996187559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable Recommender System (ExRec) provides transparency to the recommendation process, increasing users' trust and boosting the operation of online services. With the rise of large language models (LLMs), whose extensive world knowledge and nuanced language understanding enable the generation of human-like, contextually grounded explanations, LLM-powered ExRec has gained great momentum. However, existing LLM-based ExRec models suffer from profile deviation and high retrieval overhead, hindering their deployment. To address these issues, we propose Retrieval-Augmented Recommendation Explanation Generation with Hierarchical Aggregation (REXHA). Specifically, we design a hierarchical aggregation based profiling module that comprehensively considers user and item review information, hierarchically summarizing and constructing holistic profiles. Furthermore, we introduce an efficient retrieval module using two types of pseudo-document queries to retrieve relevant reviews to enhance the generation of recommendation explanations, effectively reducing retrieval latency and improving the recall of relevant reviews. Extensive experiments demonstrate that our method outperforms existing approaches by up to 12.6% w.r.t. the explanation quality while achieving high retrieval efficiency.
Related papers
- Distilling a Small Utility-Based Passage Selector to Enhance Retrieval-Augmented Generation [77.07879255360342]
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating retrieved information.<n>In RAG, the emphasis has shifted to utility, which considers the usefulness of passages for generating accurate answers.<n>Our approach focuses on utility-based selection rather than ranking, enabling dynamic passage selection tailored to specific queries without the need for fixed thresholds.<n>Our experiments demonstrate that utility-based selection provides a flexible and cost-effective solution for RAG, significantly reducing computational costs while improving answer quality.
arXiv Detail & Related papers (2025-07-25T09:32:29Z) - $\text{R}^2\text{ec}$: Towards Large Recommender Models with Reasoning [50.291998724376654]
We propose name, a unified large recommender model with intrinsic reasoning capabilities.<n> RecPO is a corresponding reinforcement learning framework that optimize name both the reasoning and recommendation capabilities simultaneously in a single policy update.<n> Experiments on three datasets with various baselines verify the effectiveness of name, showing relative improvements of 68.67% in Hit@5 and 45.21% in NDCG@20.
arXiv Detail & Related papers (2025-05-22T17:55:43Z) - HeteRAG: A Heterogeneous Retrieval-augmented Generation Framework with Decoupled Knowledge Representations [36.61614799098233]
Retrieval-augmented generation (RAG) methods can enhance the performance of LLMs.<n>Existing RAG methods typically employ identical representations of knowledge chunks for both retrieval and generation.<n>We propose a heterogeneous RAG framework (myname) that decouples the representations of knowledge chunks for retrieval and generation.
arXiv Detail & Related papers (2025-04-12T13:12:54Z) - RALLRec+: Retrieval Augmented Large Language Model Recommendation with Reasoning [22.495874056980824]
We propose Representation learning and textbfReasoning empowered retrieval-textbfAugmented textbfLarge textbfLanguage model textbfRecommendation (RALLRec+).
arXiv Detail & Related papers (2025-03-26T11:03:34Z) - RALLRec: Improving Retrieval Augmented Large Language Model Recommendation with Representation Learning [24.28601381739682]
Large Language Models (LLMs) have been integrated into recommendation systems to enhance user behavior comprehension.<n>Existing RAG methods rely primarily on textual semantics and often fail to incorporate the most relevant items.<n>We propose Representation learning for retrieval-Augmented Large Language model Recommendation (RALLRec)
arXiv Detail & Related papers (2025-02-10T02:15:12Z) - DeepNote: Note-Centric Deep Retrieval-Augmented Generation [72.70046559930555]
Retrieval-Augmented Generation (RAG) mitigates factual errors and hallucinations in Large Language Models (LLMs) for question-answering (QA)<n>We develop DeepNote, an adaptive RAG framework that achieves in-depth and robust exploration of knowledge sources through note-centric adaptive retrieval.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the ability to capture semantic relationships between items, independent of their popularity.<n>We introduce LLMEmb, a novel method leveraging LLM to generate item embeddings that enhance Sequential Recommender Systems (SRS) performance.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
We propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation.<n>Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy.<n>Results observe significant performance improvement by our method, compared with several well-known baselines.
arXiv Detail & Related papers (2024-09-11T17:01:06Z) - DimeRec: A Unified Framework for Enhanced Sequential Recommendation via Generative Diffusion Models [39.49215596285211]
Sequential Recommendation (SR) plays a pivotal role in recommender systems by tailoring recommendations to user preferences based on their non-stationary historical interactions.
We propose a novel framework called DimeRec that combines a guidance extraction module (GEM) and a generative diffusion aggregation module (DAM)
Our numerical experiments demonstrate that DimeRec significantly outperforms established baseline methods across three publicly available datasets.
arXiv Detail & Related papers (2024-08-22T06:42:09Z) - RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
We propose a framework for training query rewriting models free of annotations.
By leveraging a publicly available reranker, oursprovides feedback aligned well with the rewriting objectives.
arXiv Detail & Related papers (2024-05-23T11:00:19Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have.
In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework.
By adopting several key fine-tuning techniques, controllable and fluent explanations can be well generated.
arXiv Detail & Related papers (2023-12-25T09:09:54Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
We propose a two-stage framework using large language models for ranking-based recommendation (LlamaRec)
In particular, we use small-scale sequential recommenders to retrieve candidates based on the user interaction history.
LlamaRec consistently achieves datasets superior performance in both recommendation performance and efficiency.
arXiv Detail & Related papers (2023-10-25T06:23:48Z) - Entailment Tree Explanations via Iterative Retrieval-Generation Reasoner [56.08919422452905]
We propose an architecture called Iterative Retrieval-Generation Reasoner (IRGR)
Our model is able to explain a given hypothesis by systematically generating a step-by-step explanation from textual premises.
We outperform existing benchmarks on premise retrieval and entailment tree generation, with around 300% gain in overall correctness.
arXiv Detail & Related papers (2022-05-18T21:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.