Online Long-term Point Tracking in the Foundation Model Era
- URL: http://arxiv.org/abs/2507.09217v1
- Date: Sat, 12 Jul 2025 09:24:28 GMT
- Title: Online Long-term Point Tracking in the Foundation Model Era
- Authors: Görkay Aydemir,
- Abstract summary: Point tracking aims to identify the same physical point across video frames and serves as a geometry-aware representation of motion.<n>This thesis addresses the problem of long-term point tracking in an online setting, where frames are processed sequentially without access to future information.<n>We introduce Track-On, a transformer-based model that treats each tracked point as a query and processes video frames one at a time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Point tracking aims to identify the same physical point across video frames and serves as a geometry-aware representation of motion. This representation supports a wide range of applications, from robotics to augmented reality, by enabling accurate modeling of dynamic environments. Most existing long-term tracking approaches operate in an offline setting, where future frames are available to refine predictions and recover from occlusions. However, real-world scenarios often demand online predictions: the model must operate causally, using only current and past frames. This constraint is critical in streaming video and embodied AI, where decisions must be made immediately based on past observations. Under such constraints, viewpoint invariance becomes essential. Visual foundation models, trained on diverse large-scale datasets, offer the potential for robust geometric representations. While they lack temporal reasoning on their own, they can be integrated into tracking pipelines to enrich spatial features. In this thesis, we address the problem of long-term point tracking in an online setting, where frames are processed sequentially without access to future information or sliding windows. We begin by evaluating the suitability of visual foundation models for this task and find that they can serve as useful initializations and be integrated into tracking pipelines. However, to enable long-term tracking in an online setting, a dedicated design is still required. In particular, maintaining coherence over time in this causal regime requires memory to propagate appearance and context across frames. To address this, we introduce Track-On, a transformer-based model that treats each tracked point as a query and processes video frames one at a time. Track-On sets a new state of the art across seven public benchmarks, demonstrating the feasibility of long-term tracking without future access.
Related papers
- Tracktention: Leveraging Point Tracking to Attend Videos Faster and Better [61.381599921020175]
Temporal consistency is critical in video prediction to ensure that outputs are coherent and free of artifacts.<n>Traditional methods, such as temporal attention and 3D convolution, may struggle with significant object motion.<n>We propose the Tracktention Layer, a novel architectural component that explicitly integrates motion information using point tracks.
arXiv Detail & Related papers (2025-03-25T17:58:48Z) - Track-On: Transformer-based Online Point Tracking with Memory [34.744546679670734]
We introduce Track-On, a simple transformer-based model designed for online long-term point tracking.<n>Unlike prior methods that depend on full temporal modeling, our model processes video frames causally without access to future frames.<n>At inference time, it employs patch classification and refinement to identify correspondences and track points with high accuracy.
arXiv Detail & Related papers (2025-01-30T17:04:11Z) - Exploring Temporally-Aware Features for Point Tracking [58.63091479730935]
Chrono is a feature backbone specifically designed for point tracking with built-in temporal awareness.<n>Chrono achieves state-of-the-art performance in a refiner-free setting on the TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets.
arXiv Detail & Related papers (2025-01-21T15:39:40Z) - MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.<n>By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.<n>We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories [28.701879490459675]
We aim to learn an implicit motion field parameterized by a neural network to predict the movement of novel points within same domain.
We exploit intrinsic regularization provided by SIREN, and modify the input layer to produce atemporally smooth motion field.
Our experiments assess the model's performance in predicting unseen point trajectories and its application in temporal mesh alignment with deformation.
arXiv Detail & Related papers (2024-06-05T21:02:10Z) - LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry [52.131996528655094]
We present the Long-term Effective Any Point Tracking (LEAP) module.
LEAP innovatively combines visual, inter-track, and temporal cues with mindfully selected anchors for dynamic track estimation.
Based on these traits, we develop LEAP-VO, a robust visual odometry system adept at handling occlusions and dynamic scenes.
arXiv Detail & Related papers (2024-01-03T18:57:27Z) - TAPIR: Tracking Any Point with per-frame Initialization and temporal
Refinement [64.11385310305612]
We present a novel model for Tracking Any Point (TAP) that effectively tracks any queried point on any physical surface throughout a video sequence.
Our approach employs two stages: (1) a matching stage, which independently locates a suitable candidate point match for the query point on every other frame, and (2) a refinement stage, which updates both the trajectory and query features based on local correlations.
The resulting model surpasses all baseline methods by a significant margin on the TAP-Vid benchmark, as demonstrated by an approximate 20% absolute average Jaccard (AJ) improvement on DAVIS.
arXiv Detail & Related papers (2023-06-14T17:07:51Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.