Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models
- URL: http://arxiv.org/abs/2507.09279v3
- Date: Tue, 22 Jul 2025 03:52:39 GMT
- Title: Prompt4Trust: A Reinforcement Learning Prompt Augmentation Framework for Clinically-Aligned Confidence Calibration in Multimodal Large Language Models
- Authors: Anita Kriz, Elizabeth Laura Janes, Xing Shen, Tal Arbel,
- Abstract summary: We introduce Prompt4Trust, the first reinforcement learning framework for prompt augmentation targeting confidence calibration in MLLMs.<n>Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making.<n>Our framework showed promising zero-shot generalizations to larger MLLMs in our experiments.
- Score: 1.4008409814572673
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multimodal large language models (MLLMs) hold considerable promise for applications in healthcare. However, their deployment in safety-critical settings is hindered by two key limitations: (i) sensitivity to prompt design, and (ii) a tendency to generate incorrect responses with high confidence. As clinicians may rely on a model's stated confidence to gauge the reliability of its predictions, it is especially important that when a model expresses high confidence, it is also highly accurate. We introduce Prompt4Trust, the first reinforcement learning (RL) framework for prompt augmentation targeting confidence calibration in MLLMs. A lightweight LLM is trained to produce context-aware auxiliary prompts that guide a downstream task MLLM to generate responses in which the expressed confidence more accurately reflects predictive accuracy. Unlike conventional calibration techniques, Prompt4Trust specifically prioritizes aspects of calibration most critical for safe and trustworthy clinical decision-making. Beyond improvements driven by this clinically motivated calibration objective, our proposed method also improves task accuracy, achieving state-of-the-art medical visual question answering (VQA) performance on the PMC-VQA benchmark, which is composed of multiple-choice questions spanning diverse medical imaging modalities. Moreover, our framework trained with a small downstream task MLLM showed promising zero-shot generalization to larger MLLMs in our experiments, suggesting the potential for scalable calibration without the associated computational costs. This work demonstrates the potential of automated yet human-aligned prompt engineering for improving the the trustworthiness of MLLMs in safety critical settings. Our codebase can be found at https://github.com/xingbpshen/prompt4trust.
Related papers
- Beyond Benchmarks: Dynamic, Automatic And Systematic Red-Teaming Agents For Trustworthy Medical Language Models [87.66870367661342]
Large language models (LLMs) are used in AI applications in healthcare.<n>Red-teaming framework that continuously stress-test LLMs can reveal significant weaknesses in four safety-critical domains.<n>A suite of adversarial agents is applied to autonomously mutate test cases, identify/evolve unsafe-triggering strategies, and evaluate responses.<n>Our framework delivers an evolvable, scalable, and reliable safeguard for the next generation of medical AI.
arXiv Detail & Related papers (2025-07-30T08:44:22Z) - Calibrating Uncertainty Quantification of Multi-Modal LLMs using Grounding [48.92310906093414]
We introduce a novel approach for calibrating uncertainty quantification (UQ) tailored for multi-modal large language models (LLMs)<n>We leverage cross-modal consistency in addition to self-consistency to improve the calibration of the multi-modal models.<n>We evaluate the proposed approach across multiple multi-modal tasks, such as medical question answering (Slake) and visual question answering (VQAv2), considering multi-modal models such as LLaVA-Med and LLaVA.
arXiv Detail & Related papers (2025-04-30T19:19:21Z) - Object-Level Verbalized Confidence Calibration in Vision-Language Models via Semantic Perturbation [26.580361841501514]
Vision-language models (VLMs) excel in various multimodal tasks but frequently suffer from poor calibration.<n>This miscalibration undermines user trust, especially when models confidently provide incorrect or fabricated information.<n>We propose a novel Confidence through Semantic Perturbation (CSP) framework to improve the calibration of verbalized confidence for object-centric queries.
arXiv Detail & Related papers (2025-04-21T04:01:22Z) - SteerConf: Steering LLMs for Confidence Elicitation [11.872504642312705]
Large Language Models (LLMs) exhibit impressive performance across diverse domains but often suffer from overconfidence.<n>We propose SteerConf, a novel framework that systematically steers LLMs' confidence scores to improve their calibration and reliability.
arXiv Detail & Related papers (2025-03-04T18:40:49Z) - Rewarding Doubt: A Reinforcement Learning Approach to Calibrated Confidence Expression of Large Language Models [34.59785123314865]
A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers.<n>We propose a novel Reinforcement Learning approach that allows to directly fine-tune LLMs to express calibrated confidence estimates alongside their answers to factual questions.
arXiv Detail & Related papers (2025-03-04T13:48:50Z) - Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling [48.15636223774418]
Large language models (LLMs) are prone to hallucination stemming from misaligned self-awareness.<n>We propose the Explicit Knowledge Boundary Modeling framework to integrate fast and slow reasoning systems to harmonize reliability and usability.
arXiv Detail & Related papers (2025-03-04T03:16:02Z) - Mind the Confidence Gap: Overconfidence, Calibration, and Distractor Effects in Large Language Models [0.6091702876917281]
Large Language Models (LLMs) show remarkable proficiency in natural language tasks.<n>Overconfidence-misalignment between predicted confidence and true correctness poses significant risks in critical decision-making applications.<n>We present a comprehensive analysis on calibration in LLMs across nine LLMs and three factual Question-Answering datasets.
arXiv Detail & Related papers (2025-02-16T07:46:09Z) - Fact-Level Confidence Calibration and Self-Correction [64.40105513819272]
We propose a Fact-Level framework that calibrates confidence to relevance-weighted correctness at the fact level.
We also develop Confidence-Guided Fact-level Self-Correction ($textbfConFix$), which uses high-confidence facts within a response as additional knowledge to improve low-confidence ones.
arXiv Detail & Related papers (2024-11-20T14:15:18Z) - Enhancing Healthcare LLM Trust with Atypical Presentations Recalibration [20.049443396032423]
Black-box large language models (LLMs) are increasingly deployed in various environments.
LLMs often exhibit overconfidence, leading to potential risks and misjudgments.
We propose a novel method, textitAtypical presentations Recalibration, which leverages atypical presentations to adjust the model's confidence estimates.
arXiv Detail & Related papers (2024-09-05T03:45:35Z) - When to Trust LLMs: Aligning Confidence with Response Quality [49.371218210305656]
We propose CONfidence-Quality-ORDer-preserving alignment approach (CONQORD)
It integrates quality reward and order-preserving alignment reward functions.
Experiments demonstrate that CONQORD significantly improves the alignment performance between confidence and response accuracy.
arXiv Detail & Related papers (2024-04-26T09:42:46Z) - Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT is a method to set confidence targets and train an additional model that predicts an LLM's confidence based on its textual input and output alone.
It is conceptually simple, does not require access to the target model beyond its output, does not interfere with the language generation, and has a multitude of potential usages.
We show how our approach performs competitively in terms of calibration error for white-box and black-box LLMs on closed-book question-answering to detect incorrect LLM answers.
arXiv Detail & Related papers (2024-03-09T17:46:24Z) - Fact-and-Reflection (FaR) Improves Confidence Calibration of Large Language Models [84.94220787791389]
We propose Fact-and-Reflection (FaR) prompting, which improves the LLM calibration in two steps.
Experiments show that FaR achieves significantly better calibration; it lowers the Expected Error by 23.5%.
FaR even elicits the capability of verbally expressing concerns in less confident scenarios.
arXiv Detail & Related papers (2024-02-27T01:37:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.