Rewarding Doubt: A Reinforcement Learning Approach to Calibrated Confidence Expression of Large Language Models
- URL: http://arxiv.org/abs/2503.02623v3
- Date: Fri, 23 May 2025 09:40:34 GMT
- Title: Rewarding Doubt: A Reinforcement Learning Approach to Calibrated Confidence Expression of Large Language Models
- Authors: Paul Stangel, David Bani-Harouni, Chantal Pellegrini, Ege Özsoy, Kamilia Zaripova, Matthias Keicher, Nassir Navab,
- Abstract summary: A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers.<n>We propose a novel Reinforcement Learning approach that allows to directly fine-tune LLMs to express calibrated confidence estimates alongside their answers to factual questions.
- Score: 34.59785123314865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers. We propose a novel Reinforcement Learning approach that allows to directly fine-tune LLMs to express calibrated confidence estimates alongside their answers to factual questions. Our method optimizes a reward based on the logarithmic scoring rule, explicitly penalizing both over- and under-confidence. This encourages the model to align its confidence estimates with the actual predictive accuracy. The optimal policy under our reward design would result in perfectly calibrated confidence expressions. Unlike prior approaches that decouple confidence estimation from response generation, our method integrates confidence calibration seamlessly into the generative process of the LLM. Empirically, we demonstrate that models trained with our approach exhibit substantially improved calibration and generalize to unseen tasks without further fine-tuning, suggesting the emergence of general confidence awareness. We provide our training and evaluation code in the supplementary and will make it publicly available upon acceptance.
Related papers
- Verbalized Confidence Triggers Self-Verification: Emergent Behavior Without Explicit Reasoning Supervision [12.287123198288079]
Uncertainty calibration is essential for the safe deployment of large language models (LLMs)<n>We find that supervised fine-tuning with scalar confidence labels alone suffices to elicit self-verification behavior of language models.<n>We propose a simple rethinking method that boosts performance via test-time scaling based on calibrated uncertainty.
arXiv Detail & Related papers (2025-06-04T08:56:24Z) - Uncertainty Distillation: Teaching Language Models to Express Semantic Confidence [16.311538811237536]
Large language models (LLMs) are increasingly used for factual question-answering.<n>For these verbalized expressions of uncertainty to be meaningful, they should reflect the error rates at the expressed level of confidence.<n>We propose a simple procedure, uncertainty distillation, to teach an LLM to calibrated semantic confidences.
arXiv Detail & Related papers (2025-03-18T21:29:29Z) - On Verbalized Confidence Scores for LLMs [25.160810008907397]
Uncertainty quantification for large language models (LLMs) can establish more human trust into their responses.<n>This work focuses on asking the LLM itself to verbalize its uncertainty with a confidence score as part of its output tokens.<n>We assess the reliability of verbalized confidence scores with respect to different datasets, models, and prompt methods.
arXiv Detail & Related papers (2024-12-19T11:10:36Z) - Fact-Level Confidence Calibration and Self-Correction [64.40105513819272]
We propose a Fact-Level framework that calibrates confidence to relevance-weighted correctness at the fact level.
We also develop Confidence-Guided Fact-level Self-Correction ($textbfConFix$), which uses high-confidence facts within a response as additional knowledge to improve low-confidence ones.
arXiv Detail & Related papers (2024-11-20T14:15:18Z) - Graph-based Confidence Calibration for Large Language Models [22.394717844099684]
We propose a novel method to develop a well-calibrated confidence estimation model.
We use a weighted graph to represent the consistency among the large language models' responses to a question.
We then train a graph neural network to estimate the probability of correct responses.
arXiv Detail & Related papers (2024-11-03T20:36:44Z) - Learning to Route LLMs with Confidence Tokens [43.63392143501436]
We study the extent to which large language models can reliably indicate confidence in their answers.
We propose Self-REF, a lightweight training strategy to teach LLMs to express confidence in a reliable manner.
Compared to conventional approaches such as verbalizing confidence and examining token probabilities, we demonstrate empirically that confidence tokens show significant improvements in downstream routing and rejection learning tasks.
arXiv Detail & Related papers (2024-10-17T07:28:18Z) - SaySelf: Teaching LLMs to Express Confidence with Self-Reflective Rationales [29.33581578047835]
SaySelf is a training framework that teaches large language models to express more accurate fine-grained confidence estimates.
In addition, SaySelf directs LLMs to produce self-reflective rationales that clearly identify gaps in their parametric knowledge.
We show that the generated self-reflective rationales are reasonable and can further contribute to the calibration.
arXiv Detail & Related papers (2024-05-31T16:21:16Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
We introduce the concept of Confidence-Probability Alignment.
We probe the alignment between models' internal and expressed confidence.
Among the models analyzed, OpenAI's GPT-4 showed the strongest confidence-probability alignment.
arXiv Detail & Related papers (2024-05-25T15:42:04Z) - When to Trust LLMs: Aligning Confidence with Response Quality [49.371218210305656]
We propose CONfidence-Quality-ORDer-preserving alignment approach (CONQORD)
It integrates quality reward and order-preserving alignment reward functions.
Experiments demonstrate that CONQORD significantly improves the alignment performance between confidence and response accuracy.
arXiv Detail & Related papers (2024-04-26T09:42:46Z) - Calibrating the Confidence of Large Language Models by Eliciting Fidelity [52.47397325111864]
Large language models optimized with techniques like RLHF have achieved good alignment in being helpful and harmless.
Post-alignment, these language models often exhibit overconfidence, where the expressed confidence does not accurately calibrate with their correctness rate.
We propose a plug-and-play method to estimate the confidence of language models.
arXiv Detail & Related papers (2024-04-03T11:36:12Z) - Think Twice Before Trusting: Self-Detection for Large Language Models through Comprehensive Answer Reflection [90.71323430635593]
We propose a novel self-detection paradigm that considers the comprehensive answer space beyond LLM-generated answers.
Building upon this paradigm, we introduce a two-step framework, which firstly instructs LLM to reflect and provide justifications for each candidate answer.
This framework can be seamlessly integrated with existing approaches for superior self-detection.
arXiv Detail & Related papers (2024-03-15T02:38:26Z) - Fact-and-Reflection (FaR) Improves Confidence Calibration of Large Language Models [84.94220787791389]
We propose Fact-and-Reflection (FaR) prompting, which improves the LLM calibration in two steps.
Experiments show that FaR achieves significantly better calibration; it lowers the Expected Error by 23.5%.
FaR even elicits the capability of verbally expressing concerns in less confident scenarios.
arXiv Detail & Related papers (2024-02-27T01:37:23Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
arXiv Detail & Related papers (2024-02-14T15:52:42Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
Previous confidence elicitation methods rely on white-box access to internal model information or model fine-tuning.
This leads to a growing need to explore the untapped area of black-box approaches for uncertainty estimation.
We define a systematic framework with three components: prompting strategies for eliciting verbalized confidence, sampling methods for generating multiple responses, and aggregation techniques for computing consistency.
arXiv Detail & Related papers (2023-06-22T17:31:44Z) - Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence
Scores from Language Models Fine-Tuned with Human Feedback [91.22679548111127]
A trustworthy real-world prediction system should produce well-calibrated confidence scores.
We show that verbalized confidences emitted as output tokens are typically better-calibrated than the model's conditional probabilities.
arXiv Detail & Related papers (2023-05-24T10:12:33Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
We investigate confidence estimation for end-to-end automatic speech recognition (ASR)
We provide an extensive benchmark of popular confidence methods on four well-known speech datasets.
Our results suggest a strong baseline can be obtained by scaling the logits by a learnt temperature.
arXiv Detail & Related papers (2021-01-14T09:51:59Z) - Binary Classification from Positive Data with Skewed Confidence [85.18941440826309]
Positive-confidence (Pconf) classification is a promising weakly-supervised learning method.
In practice, the confidence may be skewed by bias arising in an annotation process.
We introduce the parameterized model of the skewed confidence, and propose the method for selecting the hyper parameter.
arXiv Detail & Related papers (2020-01-29T00:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.