Calibrating Uncertainty Quantification of Multi-Modal LLMs using Grounding
- URL: http://arxiv.org/abs/2505.03788v1
- Date: Wed, 30 Apr 2025 19:19:21 GMT
- Title: Calibrating Uncertainty Quantification of Multi-Modal LLMs using Grounding
- Authors: Trilok Padhi, Ramneet Kaur, Adam D. Cobb, Manoj Acharya, Anirban Roy, Colin Samplawski, Brian Matejek, Alexander M. Berenbeim, Nathaniel D. Bastian, Susmit Jha,
- Abstract summary: We introduce a novel approach for calibrating uncertainty quantification (UQ) tailored for multi-modal large language models (LLMs)<n>We leverage cross-modal consistency in addition to self-consistency to improve the calibration of the multi-modal models.<n>We evaluate the proposed approach across multiple multi-modal tasks, such as medical question answering (Slake) and visual question answering (VQAv2), considering multi-modal models such as LLaVA-Med and LLaVA.
- Score: 48.92310906093414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel approach for calibrating uncertainty quantification (UQ) tailored for multi-modal large language models (LLMs). Existing state-of-the-art UQ methods rely on consistency among multiple responses generated by the LLM on an input query under diverse settings. However, these approaches often report higher confidence in scenarios where the LLM is consistently incorrect. This leads to a poorly calibrated confidence with respect to accuracy. To address this, we leverage cross-modal consistency in addition to self-consistency to improve the calibration of the multi-modal models. Specifically, we ground the textual responses to the visual inputs. The confidence from the grounding model is used to calibrate the overall confidence. Given that using a grounding model adds its own uncertainty in the pipeline, we apply temperature scaling - a widely accepted parametric calibration technique - to calibrate the grounding model's confidence in the accuracy of generated responses. We evaluate the proposed approach across multiple multi-modal tasks, such as medical question answering (Slake) and visual question answering (VQAv2), considering multi-modal models such as LLaVA-Med and LLaVA. The experiments demonstrate that the proposed framework achieves significantly improved calibration on both tasks.
Related papers
- Influences on LLM Calibration: A Study of Response Agreement, Loss Functions, and Prompt Styles [4.477423478591491]
Calib-n is a novel framework that trains an auxiliary model for confidence estimation.<n>We find that few-shot prompts are the most effective for auxiliary model-based methods.
arXiv Detail & Related papers (2025-01-07T18:48:42Z) - Unveiling Uncertainty: A Deep Dive into Calibration and Performance of Multimodal Large Language Models [36.81503322875839]
Multimodal large language models (MLLMs) combine visual and textual data for tasks such as image captioning and visual question answering.<n>This paper investigates representative MLLMs, focusing on their calibration across various scenarios.<n>We observed miscalibration in their performance, and at the same time, no significant differences in calibration across these scenarios.
arXiv Detail & Related papers (2024-12-19T09:10:07Z) - DiverseAgentEntropy: Quantifying Black-Box LLM Uncertainty through Diverse Perspectives and Multi-Agent Interaction [53.803276766404494]
Existing methods, which gauge a model's uncertainty through evaluating self-consistency in responses to the original query, do not always capture true uncertainty.<n>We propose a novel method, DiverseAgentEntropy, for evaluating a model's uncertainty using multi-agent interaction.<n>Our method offers a more accurate prediction of the model's reliability and further detects hallucinations, outperforming other self-consistency-based methods.
arXiv Detail & Related papers (2024-12-12T18:52:40Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Multicalibration for Confidence Scoring in LLMs [6.948522445499497]
This paper proposes the use of "multicalibration" to yield interpretable and reliable confidence scores for outputs generated by large language models (LLMs)
We show how to form groupings for prompt/completion pairs that are correlated with the probability of correctness via two techniques: clustering within an embedding space, and "self-annotation"
We show how our techniques can yield confidence scores that provide substantial improvements in fine-grained measures of both calibration and accuracy compared to existing methods.
arXiv Detail & Related papers (2024-04-06T17:33:37Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - Calibrating Long-form Generations from Large Language Models [34.72041258464477]
Large Language Models' (LLMs) confidence scores should align with the actual likelihood of its responses being correct.
Current confidence elicitation methods and calibration metrics rely on a binary true/false assessment of response correctness.
We introduce a unified calibration framework, in which both the correctness of the LLMs' responses and their associated confidence levels are treated as distributions across a range of scores.
arXiv Detail & Related papers (2024-02-09T17:00:32Z) - Calibrating Multimodal Learning [94.65232214643436]
We propose a novel regularization technique, i.e., Calibrating Multimodal Learning (CML) regularization, to calibrate the predictive confidence of previous methods.
This technique could be flexibly equipped by existing models and improve the performance in terms of confidence calibration, classification accuracy, and model robustness.
arXiv Detail & Related papers (2023-06-02T04:29:57Z) - A Close Look into the Calibration of Pre-trained Language Models [56.998539510508515]
Pre-trained language models (PLMs) may fail in giving reliable estimates of their predictive uncertainty.
We study the dynamic change in PLMs' calibration performance in training.
We extend two recently proposed learnable methods that directly collect data to train models to have reasonable confidence estimations.
arXiv Detail & Related papers (2022-10-31T21:31:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.