論文の概要: Unified Linear Parametric Map Modeling and Perception-aware Trajectory Planning for Mobile Robotics
- arxiv url: http://arxiv.org/abs/2507.09340v2
- Date: Thu, 07 Aug 2025 08:10:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-08 21:11:55.599783
- Title: Unified Linear Parametric Map Modeling and Perception-aware Trajectory Planning for Mobile Robotics
- Title(参考訳): 移動ロボットのための統一線形パラメトリックマップモデリングと知覚認識軌道計画
- Authors: Hongyu Nie, Xu Liu, Zhaotong Tan, Sen Mei, Wenbo Su,
- Abstract要約: 本稿では,高次元空間にデータをマッピングする軽量な線形パラメトリックマップを提案する。
UAVでは,Euclidean Signed Distance Field (ESDF) マップを用いた。
UGVでは、モデルは地形を特徴づけ、クローズドフォーム勾配を提供し、オンラインプランニングによって大きな穴を回避できる。
- 参考スコア(独自算出の注目度): 1.7495208770207367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous navigation in mobile robots, reliant on perception and planning, faces major hurdles in large-scale, complex environments. These include heavy computational burdens for mapping, sensor occlusion failures for UAVs, and traversal challenges on irregular terrain for UGVs, all compounded by a lack of perception-aware strategies. To address these challenges, we introduce Random Mapping and Random Projection (RMRP). This method constructs a lightweight linear parametric map by first mapping data to a high-dimensional space, followed by a sparse random projection for dimensionality reduction. Our novel Residual Energy Preservation Theorem provides theoretical guarantees for this process, ensuring critical geometric properties are preserved. Based on this map, we propose the RPATR (Robust Perception-Aware Trajectory Planner) framework. For UAVs, our method unifies grid and Euclidean Signed Distance Field (ESDF) maps. The front-end uses an analytical occupancy gradient to refine initial paths for safety and smoothness, while the back-end uses a closed-form ESDF for trajectory optimization. Leveraging the trained RMRP model's generalization, the planner predicts unobserved areas for proactive navigation. For UGVs, the model characterizes terrain and provides closed-form gradients, enabling online planning to circumvent large holes. Validated in diverse scenarios, our framework demonstrates superior mapping performance in time, memory, and accuracy, and enables computationally efficient, safe navigation for high-speed UAVs and UGVs. The code will be released to foster community collaboration.
- Abstract(参考訳): 知覚と計画に依存した移動ロボットの自律ナビゲーションは、大規模で複雑な環境において大きなハードルに直面している。
これらには、マッピングの計算上の重荷、UAVのセンサ・オクルージョンの故障、UGVの不規則な地形におけるトラバースの課題などが含まれており、これらは全て知覚に敏感な戦略が欠如している。
これらの課題に対処するために、Random Mapping and Random Projection (RMRP)を紹介します。
本手法は,まず高次元空間へのデータマッピングを行い,次に次元減少のためのスパースランダムプロジェクションにより,軽量な線形パラメトリックマップを構築する。
我々の新しいResidual Energy Preservation Theoremは、このプロセスの理論的保証を提供し、重要な幾何学的性質を確実に保存する。
本稿では,RPATR(Robust Perception-Aware Trajectory Planner)フレームワークを提案する。
UAVではグリッドとユークリッド符号距離場(Euclidean Signed Distance Field, ESDF)を統一する。
フロントエンドは、解析的占有勾配を用いて、安全と滑らか性のために初期経路を洗練し、バックエンドは軌道最適化のためにクローズドフォームESDFを使用する。
訓練されたRMRPモデルの一般化を利用して、プランナーはプロアクティブナビゲーションのために観測されていない領域を予測する。
UGVでは、モデルは地形を特徴づけ、クローズドフォーム勾配を提供し、オンラインプランニングで大きな穴を回避できる。
様々なシナリオで検証された本フレームワークは, 時間, メモリ, 精度において優れたマッピング性能を示し, 高速UAVおよびUGVのための計算効率, 安全なナビゲーションを可能にする。
コードはコミュニティのコラボレーションを促進するためにリリースされます。
関連論文リスト
- OMEGA: Efficient Occlusion-Aware Navigation for Air-Ground Robot in Dynamic Environments via State Space Model [12.096387853748938]
地上ロボット(AGR)は、監視や災害対応に広く利用されている。
現在のAGRナビゲーションシステムは、静的環境においてよく機能する。
しかし、これらのシステムは動的で厳しい閉塞シーンの課題に直面している。
これらの問題に対処するために,効率的なAGR-Plannerを用いたOccMambaを提案する。
論文 参考訳(メタデータ) (2024-08-20T07:50:29Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
本稿では,OccNeRF法を用いて,3次元監視なしで占有ネットワークを訓練する手法を提案する。
我々は、再構成された占有領域をパラメータ化し、サンプリング戦略を再編成し、カメラの無限知覚範囲に合わせる。
意味的占有予測のために,事前学習した開語彙2Dセグメンテーションモデルの出力をフィルタリングし,プロンプトを洗練するためのいくつかの戦略を設計する。
論文 参考訳(メタデータ) (2023-12-14T18:58:52Z) - NNPP: A Learning-Based Heuristic Model for Accelerating Optimal Path Planning on Uneven Terrain [5.337162499594818]
本稿では,この縮小された検索空間内でのみ最適な経路をAstarのような基礎アルゴリズムで見つけることができるNNPPモデルを提案する。
NNPPモデルは、多くの事前注釈付き最適経路のデモから、スタート地点とゴール地点に関する情報とマップ表現を学習する。
新規地図上での経路計画のテキストカラー化が可能である。
論文 参考訳(メタデータ) (2023-08-09T08:31:05Z) - Monocular BEV Perception of Road Scenes via Front-to-Top View Projection [57.19891435386843]
本稿では,鳥の目視で道路配置と車両占有率によって形成された局所地図を再構築する新しい枠組みを提案する。
我々のモデルは1つのGPU上で25FPSで動作し、リアルタイムパノラマHDマップの再構築に有効である。
論文 参考訳(メタデータ) (2022-11-15T13:52:41Z) - Differentiable Spatial Planning using Transformers [87.90709874369192]
本研究では、長距離空間依存を計画して行動を生成する障害マップを与えられた空間計画変換器(SPT)を提案する。
エージェントが地上の真理マップを知らない環境では、エンド・ツー・エンドのフレームワークで事前訓練されたSPTを利用する。
SPTは、操作タスクとナビゲーションタスクの両方のすべてのセットアップにおいて、最先端の差別化可能なプランナーよりも優れています。
論文 参考訳(メタデータ) (2021-12-02T06:48:16Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
本研究では,大規模自律飛行とリアルタイムセマンティックマッピングを,挑戦的なアンダーキャノピー環境下で実現可能な統合システムを提案する。
我々は、スキャン全体で関連付けられ、木のトランクモデルと同様にロボットのポーズを制約するために使用されるLiDARデータから、木の幹と地面の平面を検出し、モデル化する。
ドリフト補償機構は、プランナー最適性とコントローラ安定性を維持しつつ、セマンティックSLAM出力を用いたドリフトをリアルタイムで最小化するように設計されている。
論文 参考訳(メタデータ) (2021-09-14T07:24:53Z) - Adaptive Path Planning for UAV-based Multi-Resolution Semantic
Segmentation [26.729010176211016]
本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
私たちのアプローチの重要な特徴は、ディープラーニングベースのアーキテクチャのための新しい精度モデルです。
実地フィールドデータを用いた精密農業における作物・雑草分断の適用性について,本研究のアプローチを評価した。
論文 参考訳(メタデータ) (2021-08-04T07:30:04Z) - UAV Path Planning using Global and Local Map Information with Deep
Reinforcement Learning [16.720630804675213]
本研究は, 深部強化学習(DRL)に基づく自律型UAV経路計画法を提案する。
我々は、UAVの目標は、データ収集(DH)への関心領域を調査することであり、UAVは分散IoT(Internet of Things)センサーデバイスからデータを収集することである。
環境の構造化マップ情報を活用することで、異なるミッションシナリオで同一のアーキテクチャを持つ二重深度Q-networks(DDQN)を訓練する。
論文 参考訳(メタデータ) (2020-10-14T09:59:10Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。