SegVec3D: A Method for Vector Embedding of 3D Objects Oriented Towards Robot manipulation
- URL: http://arxiv.org/abs/2507.09459v1
- Date: Sun, 13 Jul 2025 02:54:55 GMT
- Title: SegVec3D: A Method for Vector Embedding of 3D Objects Oriented Towards Robot manipulation
- Authors: Zhihan Kang, Boyu Wang,
- Abstract summary: SegVec3D is a novel framework for 3D point cloud instance segmentation.<n>It integrates attention mechanisms, embedding learning, and cross-modal alignment.
- Score: 4.19191792860075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose SegVec3D, a novel framework for 3D point cloud instance segmentation that integrates attention mechanisms, embedding learning, and cross-modal alignment. The approach builds a hierarchical feature extractor to enhance geometric structure modeling and enables unsupervised instance segmentation via contrastive clustering. It further aligns 3D data with natural language queries in a shared semantic space, supporting zero-shot retrieval. Compared to recent methods like Mask3D and ULIP, our method uniquely unifies instance segmentation and multimodal understanding with minimal supervision and practical deployability.
Related papers
- OpenSplat3D: Open-Vocabulary 3D Instance Segmentation using Gaussian Splatting [52.40697058096931]
3D Gaussian Splatting (3DGS) has emerged as a powerful representation for neural scene reconstruction.<n>We introduce an approach for open-vocabulary 3D instance segmentation without requiring manual labeling, termed OpenSplat3D.<n>We show results on LERF-mask and LERF-OVS as well as the full ScanNet++ validation set, demonstrating the effectiveness of our approach.
arXiv Detail & Related papers (2025-06-09T12:37:15Z) - SegPoint: Segment Any Point Cloud via Large Language Model [62.69797122055389]
We propose a model, called SegPoint, to produce point-wise segmentation masks across a diverse range of tasks.
SegPoint is the first model to address varied segmentation tasks within a single framework.
arXiv Detail & Related papers (2024-07-18T17:58:03Z) - Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation [50.51125319374404]
We propose a novel self-training network InsTeacher3D to explore and exploit pure instance knowledge from unlabeled data.
Experimental results on multiple large-scale datasets show that the InsTeacher3D significantly outperforms prior state-of-the-art semi-supervised approaches.
arXiv Detail & Related papers (2024-06-24T16:35:58Z) - SAI3D: Segment Any Instance in 3D Scenes [68.57002591841034]
We introduce SAI3D, a novel zero-shot 3D instance segmentation approach.
Our method partitions a 3D scene into geometric primitives, which are then progressively merged into 3D instance segmentations.
Empirical evaluations on ScanNet, Matterport3D and the more challenging ScanNet++ datasets demonstrate the superiority of our approach.
arXiv Detail & Related papers (2023-12-17T09:05:47Z) - Instance-aware 3D Semantic Segmentation powered by Shape Generators and
Classifiers [28.817905887080293]
We propose a novel instance-aware approach for 3D semantic segmentation.
Our method combines several geometry processing tasks supervised at instance-level to promote the consistency of the learned feature representation.
arXiv Detail & Related papers (2023-11-21T02:14:16Z) - OpenMask3D: Open-Vocabulary 3D Instance Segmentation [84.58747201179654]
OpenMask3D is a zero-shot approach for open-vocabulary 3D instance segmentation.
Our model aggregates per-mask features via multi-view fusion of CLIP-based image embeddings.
arXiv Detail & Related papers (2023-06-23T17:36:44Z) - Mask3D: Mask Transformer for 3D Semantic Instance Segmentation [89.41640045953378]
We show that we can leverage generic Transformer building blocks to directly predict instance masks from 3D point clouds.
Using Transformer decoders, the instance queries are learned by iteratively attending to point cloud features at multiple scales.
Mask3D sets a new state-of-the-art on ScanNet test (+6.2 mAP), S3DIS 6-fold (+10.1 mAP),LS3D (+11.2 mAP) and ScanNet200 test (+12.4 mAP)
arXiv Detail & Related papers (2022-10-06T17:55:09Z) - Semantic Segmentation-Assisted Instance Feature Fusion for Multi-Level
3D Part Instance Segmentation [17.929866369256555]
We present a new method for 3D part instance segmentation.
Our method exploits semantic segmentation to fuse nonlocal instance features, such as center prediction.
Our method outperforms existing methods with a large-margin improvement in the PartNet benchmark.
arXiv Detail & Related papers (2022-08-09T13:22:55Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - Robust 3D Scene Segmentation through Hierarchical and Learnable
Part-Fusion [9.275156524109438]
3D semantic segmentation is a fundamental building block for several scene understanding applications such as autonomous driving, robotics and AR/VR.
Previous methods have utilized hierarchical, iterative methods to fuse semantic and instance information, but they lack learnability in context fusion.
This paper presents Segment-Fusion, a novel attention-based method for hierarchical fusion of semantic and instance information.
arXiv Detail & Related papers (2021-11-16T13:14:47Z) - Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with
Deep Metric Learning [5.699350798684963]
We propose a simple, yet efficient algorithm for 3D instance segmentation using deep metric learning.
For high-level intelligent tasks from a large scale scene, 3D instance segmentation recognizes individual instances of objects.
We demonstrate the state-of-the-art performance of our algorithm in the ScanNet 3D instance segmentation benchmark on AP score.
arXiv Detail & Related papers (2020-07-07T02:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.