論文の概要: Evaluating LLMs on Sequential API Call Through Automated Test Generation
- arxiv url: http://arxiv.org/abs/2507.09481v1
- Date: Sun, 13 Jul 2025 03:52:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.277643
- Title: Evaluating LLMs on Sequential API Call Through Automated Test Generation
- Title(参考訳): 自動テスト生成による連続API呼び出しにおけるLCMの評価
- Authors: Yuheng Huang, Da Song, Zhenlan Ji, Shuai Wang, Lei Ma,
- Abstract要約: StateGenは、シーケンシャルなAPIインタラクションを含む多様なコーディングタスクを生成するように設計された、自動化されたフレームワークである。
3つの代表的なシナリオにまたがる120の検証済みのテストケースを含むベンチマークであるStateEvalを構築します。
実験の結果、StateGenは挑戦的で現実的なAPI指向のタスクを効果的に生成できることを確認した。
- 参考スコア(独自算出の注目度): 10.621357661774244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By integrating tools from external APIs, Large Language Models (LLMs) have expanded their promising capabilities in a diverse spectrum of complex real-world tasks. However, testing, evaluation, and analysis of LLM tool use remain in their early stages. Most existing benchmarks rely on manually collected test cases, many of which cannot be automatically checked for semantic correctness and instead depend on static methods such as string matching. Additionally, these benchmarks often overlook the complex interactions that occur between sequential API calls, which are common in real-world applications. To fill the gap, in this paper, we introduce StateGen, an automated framework designed to generate diverse coding tasks involving sequential API interactions. StateGen combines state-machine-based API constraint solving and validation, energy-based sampling, and control-flow injection to generate executable programs. These programs are then translated into human-like natural language task descriptions through a collaboration of two LLM agents. Utilizing StateGen, we construct StateEval, a benchmark encompassing 120 verified test cases spanning across three representative scenarios: Session Service, Tensor Operation, and ElevenLabs MCP. Experimental results confirm that StateGen can effectively generate challenging and realistic API-oriented tasks, highlighting areas for improvement in current LLMs incorporating APIs.
- Abstract(参考訳): 外部APIからツールを統合することで、LLM(Large Language Models)は、さまざまな複雑な現実世界タスクにおいて、有望な能力を拡大した。
しかし、LSMツールの使用の試験、評価、分析は、まだ初期段階にある。
既存のベンチマークのほとんどは手作業によるテストケースに依存しており、その多くはセマンティックな正確性のために自動的にチェックすることはできず、代わりに文字列マッチングのような静的メソッドに依存している。
さらに、これらのベンチマークは、実世界のアプリケーションでよく見られるシーケンシャルなAPI呼び出し間の複雑な相互作用を見落としていることが多い。
このギャップを埋めるために、本稿では、シーケンシャルなAPIインタラクションを含む多様なコーディングタスクを生成するように設計された、StateGenについて紹介する。
StateGenはステートマシンベースのAPI制約解決とバリデーション、エネルギーベースのサンプリング、制御フローインジェクションを組み合わせて実行可能なプログラムを生成する。
これらのプログラムは、2つのLLMエージェントの協調によって、人間のような自然言語タスク記述に変換される。
StateGenを利用すると、セッションサービス、テンソルオペレーション、およびElevenLabs MCPという3つの代表的なシナリオにまたがる120の検証済みのテストケースを含むベンチマークであるStateEvalを構築します。
実験の結果、StateGenは挑戦的で現実的なAPI指向のタスクを効果的に生成できることを確認した。
関連論文リスト
- Skill Discovery for Software Scripting Automation via Offline Simulations with LLMs [63.10710876536337]
検証済みスクリプトの集合であるソフトウェア固有のスキルセットをキュレートするためのオフラインシミュレーションフレームワークを提案する。
本フレームワークは,1)タスク作成,トップダウン機能の利用,およびボトムアップAPIのシナジー探索という2つのコンポーネントから構成される。
Adobe Illustratorでの実験では、我々のフレームワークは自動化の成功率を大幅に改善し、レスポンス時間を短縮し、ランタイムトークンのコストを削減しています。
論文 参考訳(メタデータ) (2025-04-29T04:03:37Z) - A Framework for Testing and Adapting REST APIs as LLM Tools [5.758488787763118]
エージェントのツールとして機能するREST APIの評価と拡張を目的とした,新しいテストフレームワークを提案する。
当社のフレームワークはapisをツールとして変換し、APIの包括的なテストケースを生成し、ケースを自然言語命令に変換し、エージェントがAPIを正しく呼び出し、そのインプットとレスポンスを処理する能力を評価する。
論文 参考訳(メタデータ) (2025-04-22T02:52:08Z) - API Agents vs. GUI Agents: Divergence and Convergence [37.13923771130588]
APIとGUIベースの大規模言語モデル(LLM)は、グラフィカルなユーザインターフェースを人間的な方法で操作する。
本稿では,それらの分散と潜在的収束を系統的に解析する。
LLMベースの自動化における継続的なイノベーションは、APIとGUI駆動エージェントの境界線を曖昧にする可能性があることを示唆している。
論文 参考訳(メタデータ) (2025-03-14T04:26:21Z) - ExploraCoder: Advancing code generation for multiple unseen APIs via planning and chained exploration [70.26807758443675]
ExploraCoderはトレーニング不要のフレームワークで、大規模な言語モデルにコードソリューションで見えないAPIを呼び出す権限を与える。
実験の結果、ExploreaCoderは、事前のAPI知識に欠けるモデルのパフォーマンスを大幅に改善することが示された。
論文 参考訳(メタデータ) (2024-12-06T19:00:15Z) - Commit0: Library Generation from Scratch [77.38414688148006]
Commit0は、AIエージェントにスクラッチからライブラリを書くよう促すベンチマークである。
エージェントには、ライブラリのAPIを概説する仕様文書と、インタラクティブなユニットテストスイートが提供されている。
Commit0はまた、モデルが生成したコードに対して静的解析と実行フィードバックを受け取る、インタラクティブな環境も提供する。
論文 参考訳(メタデータ) (2024-12-02T18:11:30Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Harnessing LLMs for API Interactions: A Framework for Classification and Synthetic Data Generation [0.0]
本稿では,自然言語入力を対応するAPI呼び出しに分類するために,Large Language Models (LLM) を統合する新しいシステムを提案する。
本システムでは,単純な入力による複雑なソフトウェア機能の実行,インタラクション効率の向上,ソフトウェア利用障壁の低減を実現している。
論文 参考訳(メタデータ) (2024-09-18T04:56:52Z) - APITestGenie: Automated API Test Generation through Generative AI [2.0716352593701277]
APITestGenieはビジネス要件とAPI仕様から実行可能なAPIテストスクリプトを生成する。
10の現実世界のAPIを使った実験では、ツールが有効なテストスクリプトを57%生成した。
人間の介入は、CI/CDパイプラインに統合される前に生成されたスクリプトを検証または洗練するために推奨される。
論文 参考訳(メタデータ) (2024-09-05T18:02:41Z) - Automatic benchmarking of large multimodal models via iterative experiment programming [71.78089106671581]
本稿では,LMMの自動ベンチマークのための最初のフレームワークであるAPExを紹介する。
自然言語で表現された研究の質問に対して、APExは大きな言語モデル(LLM)と事前定義されたツールのライブラリを活用して、手元にあるモデルの一連の実験を生成する。
調査の現在の状況に基づいて、APExはどの実験を行うか、結果が結論を引き出すのに十分かどうかを選択する。
論文 参考訳(メタデータ) (2024-06-18T06:43:46Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation [96.71370747681078]
我々は,CIFAR-10におけるモデル性能の改善から,BabyLMのような最近の研究課題まで,13のタスクからなるMLAgentBenchを紹介した。
各タスクに対して、エージェントはファイルの読み書き、コードの実行、出力の検査などのアクションを実行することができる。
我々は、Claude v1.0、Claude v2.1、Claude v3 Opus、GPT-4、GPT-4-turbo、Gemini-Pro、Mixtralに基づいてベンチマークエージェントをベンチマークし、Claude v3 Opusエージェントが成功率の点で最高であることを示す。
論文 参考訳(メタデータ) (2023-10-05T04:06:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。