Quantum Hall-like effect for neutral particles with magnetic dipole moments in a quantum dot
- URL: http://arxiv.org/abs/2507.09604v1
- Date: Sun, 13 Jul 2025 12:20:11 GMT
- Title: Quantum Hall-like effect for neutral particles with magnetic dipole moments in a quantum dot
- Authors: Carlos Magno O. Pereira, Edilberto O. Silva,
- Abstract summary: We predict a new class of quantum Hall phenomena in completely neutral systems.<n>We show that the interplay between radial electric fields and dipole moments induces exact $e2/h$ quantization without the need for Landau levels or external magnetic fields.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We predict a new class of quantum Hall phenomena in completely neutral systems, demonstrating that the interplay between radial electric fields and dipole moments induces exact $e^2/h$ quantization without the need for Landau levels or external magnetic fields. Contrary to conventional wisdom, our theory reveals that: (i) the singularity of line charges does not destroy topological protection, (ii) spin-control of quantization emerges from boundary conditions alone, and (iii) the effect persists up to 25 K, surpassing typical neutral systems. These findings establish electric field engineering as a viable route to topological matter beyond magnetic paradigms.
Related papers
- Beyond Poincaré Stresses: A Modern Quantum Field Theory Take on Hydrogen's Electromagnetic Mass [0.0]
We revisit the longstanding electromagnetic mass problem from a modern quantum field theory perspective.<n>We show that the effective electromagnetic mass deviates from the conventional relation $E/c2$.<n>We contrast our quantum field theory results with the highly accurate predictions of the Schr"odinger equation.
arXiv Detail & Related papers (2025-04-14T03:27:37Z) - Controllable and Continuous Quantum Phase Transitions in Intrinsic Magnetic Topological Insulator [50.54133633499971]
We study the intrinsic magnetic topological material MnBi2Te4 in which the heavy n-type doping features are strongly suppressed.<n>Based on angle-resolved photoemission spectroscopy, transport measurements, and first-principles calculations, we reveal two magnetism-induced TPTs.<n>Our work paves the way for the realization of intrinsic magnetic topological states in MnBi2Te4 family and provides an ideal platform for achieving controllable and continuous TPTs.
arXiv Detail & Related papers (2025-03-08T03:46:54Z) - Magnetic field effects on the Kitaev model coupled to environment [0.0]
An effective non-Hermitian Kitaev model was shown to give rise to a gapless spin liquid state with exceptional points in the Majorana dispersions.
We show that the exceptional points remain gapless up to a finite critical magnetic field, in stark contrast to the Hermitian case where an infinitesimal field opens a gap.
arXiv Detail & Related papers (2024-02-08T09:51:37Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Electrodynamic Aharonov-Bohm effect [0.0]
We propose an electrodynamic Aharonov-Bohm scheme where a nonzero AB phase difference appears even if the interferometer paths do not enclose a magnetic flux.
In the proposal, the current in a solenoid outside the interferometer varies in time while the quantum particle is in a superposition state inside two Faraday cages.
arXiv Detail & Related papers (2023-02-28T13:07:24Z) - Relativistic Landau quantization in non-uniform magnetic field and its
applications to white dwarfs and quantum information [0.0]
We find that the degeneracy of Landau levels, which arises in the case of the constant magnetic field, lifts out when the field is variable.
Also the varying magnetic field splits Landau levels of electrons with zero angular momentum from positive angular momentum, unlike the constant field which only can split the levels between positive and negative angular momenta.
arXiv Detail & Related papers (2021-10-18T18:00:06Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Three Faces of the Aharonov-Bohm Phase [0.0]
The Aharonov-Bohm (AB) phase that makes its entry in the above bizarre effect is also deployed to derive the observed magnetic flux quantisation in superconductors.
The Dirac result implies that the existence of a single magnetic monopole anywhere in the universe would entail quantisation of the product of a particle's electric charge and the monopole's magnetic charge.
arXiv Detail & Related papers (2020-10-21T13:34:38Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.