I2I-PR: Deep Iterative Refinement for Phase Retrieval using Image-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2507.09609v1
- Date: Sun, 13 Jul 2025 12:26:01 GMT
- Title: I2I-PR: Deep Iterative Refinement for Phase Retrieval using Image-to-Image Diffusion Models
- Authors: Mehmet Onurcan Kaya, Figen S. Oktem,
- Abstract summary: We introduce a novel phase retrieval approach based on an image-to-image diffusion framework called Inversion by Direct Iteration.<n>Our method achieves substantial improvements in both training efficiency and reconstruction quality.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Phase retrieval involves recovering a signal from intensity-only measurements, crucial in many fields such as imaging, holography, optical computing, crystallography, and microscopy. Although there are several well-known phase retrieval algorithms, including classical iterative solvers, the reconstruction performance often remains sensitive to initialization and measurement noise. Recently, image-to-image diffusion models have gained traction in various image reconstruction tasks, yielding significant theoretical insights and practical breakthroughs. In this work, we introduce a novel phase retrieval approach based on an image-to-image diffusion framework called Inversion by Direct Iteration. Our method begins with an enhanced initialization stage that leverages a hybrid iterative technique, combining the Hybrid Input-Output and Error Reduction methods and incorporating a novel acceleration mechanism to obtain a robust crude estimate. Then, it iteratively refines this initial crude estimate using the learned image-to-image pipeline. Our method achieves substantial improvements in both training efficiency and reconstruction quality. Furthermore, our approach utilizes aggregation techniques to refine quality metrics and demonstrates superior results compared to both classical and contemporary techniques. This highlights its potential for effective and efficient phase retrieval across various applications.
Related papers
- EchoIR: Advancing Image Restoration with Echo Upsampling and Bi-Level Optimization [0.0]
We introduce the EchoIR, an UNet-like image restoration network with a bilateral learnable upsampling mechanism to bridge this gap.<n>In pursuit of modeling a hierarchical model of image restoration and upsampling tasks, we propose the Approximated Sequential Bi-level Optimization (AS-BLO)
arXiv Detail & Related papers (2024-12-10T06:27:08Z) - Deep Plug-and-Play HIO Approach for Phase Retrieval [0.0]
In the phase retrieval problem, the aim is the recovery of an unknown image from intensity-only measurements.<n>Recent learning-based approaches have emerged as powerful alternatives to the analytical methods for several inverse problems.<n>A novel plug-and-play approach that exploits learning-based prior and efficient update steps has been presented.
arXiv Detail & Related papers (2024-11-28T07:36:29Z) - Learning Efficient and Effective Trajectories for Differential Equation-based Image Restoration [59.744840744491945]
In this paper, we reformulate the trajectory optimization of this kind of method, focusing on enhancing both reconstruction quality and efficiency.<n>To mitigate the considerable computational burden associated with iterative sampling, we propose cost-aware trajectory distillation.<n>We fine-tune a foundational diffusion model (FLUX) with 12B parameters by using our algorithms, producing a unified framework for handling 7 kinds of image restoration tasks.
arXiv Detail & Related papers (2024-10-07T07:46:08Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
We design an effective diffusion transformer for image super-resolution (DiT-SR)
In practice, DiT-SR leverages an overall U-shaped architecture, and adopts a uniform isotropic design for all the transformer blocks.
We analyze the limitation of the widely used AdaLN, and present a frequency-adaptive time-step conditioning module.
arXiv Detail & Related papers (2024-09-29T07:14:16Z) - Multi-scale Conditional Generative Modeling for Microscopic Image Restoration [9.345394120765123]
We introduce a multi-scale generative model that enhances conditional image restoration through a novel exploitation of the Brownian Bridge process within wavelet domain.
Our method provides significant acceleration during training and sampling while sustaining a high image generation quality and diversity on par with SOTA diffusion models.
This pioneering technique offers an efficient image restoration framework that harmonizes efficiency with quality, signifying a major stride in incorporating cutting-edge generative models into computational microscopy.
arXiv Detail & Related papers (2024-07-07T05:11:00Z) - ReNoise: Real Image Inversion Through Iterative Noising [62.96073631599749]
We introduce an inversion method with a high quality-to-operation ratio, enhancing reconstruction accuracy without increasing the number of operations.
We evaluate the performance of our ReNoise technique using various sampling algorithms and models, including recent accelerated diffusion models.
arXiv Detail & Related papers (2024-03-21T17:52:08Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling.
We develop our model, dubbed IRGen, to address the technical challenge of converting an image into a concise sequence of semantic units.
Our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks and two million-scale datasets.
arXiv Detail & Related papers (2023-03-17T17:07:36Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.