論文の概要: Causality-informed Anomaly Detection in Partially Observable Sensor Networks: Moving beyond Correlations
- arxiv url: http://arxiv.org/abs/2507.09742v1
- Date: Sun, 13 Jul 2025 18:48:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.873494
- Title: Causality-informed Anomaly Detection in Partially Observable Sensor Networks: Moving beyond Correlations
- Title(参考訳): 部分観測型センサネットワークにおける因果性インフォームド異常検出:相関を超えて
- Authors: Xiaofeng Xiao, Bo Shen, Xubo Yue,
- Abstract要約: 異常検出における部分観測可能なセンサ配置に対する因果性インフォームド深部Q-ネットワーク手法を提案する。
Q-networkトレーニングの各段階で因果情報を統合することにより、より高速な収束とより厳密な理論誤差境界を実現する。
- 参考スコア(独自算出の注目度): 4.137681034935277
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Nowadays, as AI-driven manufacturing becomes increasingly popular, the volume of data streams requiring real-time monitoring continues to grow. However, due to limited resources, it is impractical to place sensors at every location to detect unexpected shifts. Therefore, it is necessary to develop an optimal sensor placement strategy that enables partial observability of the system while detecting anomalies as quickly as possible. Numerous approaches have been proposed to address this challenge; however, most existing methods consider only variable correlations and neglect a crucial factor: Causality. Moreover, although a few techniques incorporate causal analysis, they rely on interventions-artificially creating anomalies-to identify causal effects, which is impractical and might lead to catastrophic losses. In this paper, we introduce a causality-informed deep Q-network (Causal DQ) approach for partially observable sensor placement in anomaly detection. By integrating causal information at each stage of Q-network training, our method achieves faster convergence and tighter theoretical error bounds. Furthermore, the trained causal-informed Q-network significantly reduces the detection time for anomalies under various settings, demonstrating its effectiveness for sensor placement in large-scale, real-world data streams. Beyond the current implementation, our technique's fundamental insights can be applied to various reinforcement learning problems, opening up new possibilities for real-world causality-informed machine learning methods in engineering applications.
- Abstract(参考訳): 近年、AI駆動製造が普及するにつれて、リアルタイム監視を必要とするデータストリームの量が増え続けている。
しかし、資源が限られているため、センサを各場所に配置して予期せぬシフトを検出することは不可能である。
したがって,異常をできるだけ早く検出しつつ,システムの部分観測可能性を実現するための最適センサ配置戦略を開発する必要がある。
この問題に対処するために多くのアプローチが提案されているが、既存のほとんどの手法では変数相関のみを考慮し、重要な要因を無視している。
さらに、因果解析を取り入れたいくつかの手法は、因果効果を特定するために、技術的に異常を生じる介入に依存しており、これは非現実的であり、破滅的な損失につながる可能性がある。
本稿では、異常検出における部分的に観測可能なセンサ配置に対する因果性インフォームドディープQ-ネットワーク(Causal DQ)アプローチを提案する。
Q-networkトレーニングの各段階で因果情報を統合することにより、より高速な収束とより厳密な理論誤差境界を実現する。
さらに、訓練された因果情報を用いたQ-networkは、様々な環境下での異常検出時間を著しく短縮し、大規模な実世界のデータストリームにおけるセンサ配置の有効性を示す。
現在の実装を超えて、我々の技術の基本的洞察は、様々な強化学習問題に適用でき、エンジニアリングアプリケーションにおける実世界の因果性インフォームド機械学習手法の新たな可能性を開くことができる。
関連論文リスト
- Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
異常検出は産業アプリケーションの品質管理において重要な役割を担っている。
既存の方法は、一般化可能なモデルをトレーニングすることで、ドメインシフトに対処しようとする。
提案手法は,最先端の異常検出法や領域適応法と比較して,優れた結果を示す。
論文 参考訳(メタデータ) (2025-03-19T05:25:52Z) - Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series [1.223779595809275]
ニューラルネットワークによるディープラーニングに基づく最先端のアプローチは、異常認識において優れたパフォーマンスを達成する。
本手法はトレーニング効率が向上し,最先端のニューラルネットワークアーキテクチャの精度に優れることを示す。
論文 参考訳(メタデータ) (2024-04-15T15:42:12Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
本稿では,分散光ファイバーセンシング技術に基づくエネルギーパイプラインの放射状脅威推定手法を提案する。
本稿では,包括的信号特徴抽出のための連続的マルチビュー・マルチドメイン機能融合手法を提案する。
本研究では,事前学習モデルによる伝達学習の概念を取り入れ,認識精度と学習効率の両立を図る。
論文 参考訳(メタデータ) (2023-12-18T12:37:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Towards an Awareness of Time Series Anomaly Detection Models'
Adversarial Vulnerability [21.98595908296989]
本研究では,センサデータに小さな対向摂動のみを加えることで,最先端の異常検出手法の性能を著しく劣化させることを実証した。
いくつかのパブリックデータセットとプライベートデータセットに対して、予測エラー、異常、分類スコアなど、さまざまなスコアを使用する。
敵攻撃に対する異常検出システムの脆弱性を初めて実証した。
論文 参考訳(メタデータ) (2022-08-24T01:55:50Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Graph Neural Network-Based Anomaly Detection in Multivariate Time Series [17.414474298706416]
我々は,高次元時系列データにおける異常を検出する新しい方法を開発した。
我々のアプローチは、構造学習アプローチとグラフニューラルネットワークを組み合わせている。
本研究では,本手法がベースラインアプローチよりも高精度に異常を検出することを示す。
論文 参考訳(メタデータ) (2021-06-13T09:07:30Z) - A Survey on Anomaly Detection for Technical Systems using LSTM Networks [0.0]
異常は、意図されたシステムの動作から逸脱し、部分的または完全なシステム障害と同様に効率が低下する可能性がある。
本稿では,ディープニューラルネットワーク,特に長期記憶ネットワークを用いた最先端異常検出に関する調査を行う。
調査したアプローチは、アプリケーションシナリオ、データ、異常タイプ、およびさらなるメトリクスに基づいて評価される。
論文 参考訳(メタデータ) (2021-05-28T13:24:40Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
異常検出は、期待される振る舞いから著しく逸脱するデータパターンを特定することに関わる。
データ分析からe-health、サイバーセキュリティ、予測メンテナンス、障害防止、産業自動化に至るまで、幅広いアプリケーション領域があるため、これは重要な研究課題である。
本稿では,センサシステムの特定の領域における異常検出に使用される最先端手法について概説する。
論文 参考訳(メタデータ) (2020-10-27T09:56:16Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。