論文の概要: Intersection of Reinforcement Learning and Bayesian Optimization for Intelligent Control of Industrial Processes: A Safe MPC-based DPG using Multi-Objective BO
- arxiv url: http://arxiv.org/abs/2507.09864v1
- Date: Mon, 14 Jul 2025 02:31:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:24.172924
- Title: Intersection of Reinforcement Learning and Bayesian Optimization for Intelligent Control of Industrial Processes: A Safe MPC-based DPG using Multi-Objective BO
- Title(参考訳): 産業プロセスのインテリジェント制御のための強化学習とベイズ最適化のインターセクション:多目的BOを用いた安全なMPCベースDPG
- Authors: Hossein Nejatbakhsh Esfahani, Javad Mohammadpour Velni,
- Abstract要約: Model Predictive Control (MPC)ベースのReinforcement Learning (RL)は、Deep Neural Network (DNN)ベースのRL手法の、構造化された解釈可能な代替手段を提供する。
標準MPC-RLアプローチは、収束の遅さ、パラメータ化の制限による最適条件学習、オンライン適応時の安全性の問題に悩まされることが多い。
MPC-RLと多目的ベイズ最適化(MOBO)を統合した新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model Predictive Control (MPC)-based Reinforcement Learning (RL) offers a structured and interpretable alternative to Deep Neural Network (DNN)-based RL methods, with lower computational complexity and greater transparency. However, standard MPC-RL approaches often suffer from slow convergence, suboptimal policy learning due to limited parameterization, and safety issues during online adaptation. To address these challenges, we propose a novel framework that integrates MPC-RL with Multi-Objective Bayesian Optimization (MOBO). The proposed MPC-RL-MOBO utilizes noisy evaluations of the RL stage cost and its gradient, estimated via a Compatible Deterministic Policy Gradient (CDPG) approach, and incorporates them into a MOBO algorithm using the Expected Hypervolume Improvement (EHVI) acquisition function. This fusion enables efficient and safe tuning of the MPC parameters to achieve improved closed-loop performance, even under model imperfections. A numerical example demonstrates the effectiveness of the proposed approach in achieving sample-efficient, stable, and high-performance learning for control systems.
- Abstract(参考訳): Model Predictive Control (MPC)ベースのReinforcement Learning (RL)は、Deep Neural Network (DNN)ベースのRL手法の、構造化された解釈可能な代替手段を提供する。
しかし、標準的なMPC-RLアプローチは、収束が遅いこと、パラメータ化の制限による最適でない政策学習、オンライン適応時の安全性の問題に悩まされることが多い。
これらの課題に対処するために,MPC-RLと多目的ベイズ最適化(MOBO)を統合した新しいフレームワークを提案する。
提案したMPC-RL-MOBOは,CDPG(Compatible Deterministic Policy Gradient)アプローチを用いて推定したRLステージコストとその勾配のノイズ評価を利用して,期待されたハイパーボリューム改善(EHVI)取得関数を用いてMOBOアルゴリズムに組み込む。
この融合により、モデル不完全な場合であっても、MPCパラメータの効率的かつ安全なチューニングが可能となり、クローズドループ性能が向上する。
数値的な例では,制御系に対するサンプル効率,安定度,高性能な学習を実現する上で,提案手法の有効性を示す。
関連論文リスト
- Computationally efficient Gauss-Newton reinforcement learning for model predictive control [0.8437187555622164]
本稿では,2次ポリシーデリバティブの必要性を排除した決定主義政策ヘッセンのガウス・ニュートン近似を導入する。
非線形連続拌槽リアクターにおけるアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2025-08-04T14:00:40Z) - Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
強化学習(Reinforcement Learning, RL)は、ニューラルネットワーク最適化のための強力なツールとして登場した。
大幅な進歩にもかかわらず、既存のRLアプローチは報酬信号の減少や大規模な行動空間における非効率な探索といった課題に直面している。
統計的比較モデルを用いて定量的報酬信号を定性的選好信号に変換する新しい手法であるPreference Optimizationを提案する。
論文 参考訳(メタデータ) (2025-05-13T16:47:00Z) - Sample-Efficient Reinforcement Learning of Koopman eNMPC [42.72938925647165]
強化学習は、データ駆動(経済)非線形モデル予測コントローラ((e)NMPC)を、特定の制御タスクにおける最適な性能に調整するために使用することができる。
モデルに基づくRLアルゴリズムと、Koopman (e)NMPCを自動微分可能なポリシーに変換する方法を組み合わせる。
論文 参考訳(メタデータ) (2025-03-24T15:35:16Z) - A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning [61.403275660120606]
強化学習(Reinforcement Learning, RL)に基づく微調整は, 拡散モデルとブラックボックスの目的を整合させる強力なアプローチとして登場した。
拡散微調整のための新しいRLであるLOOP(Left-one-out PPO)を提案する。
以上の結果から, LOOPは様々なブラックボックス対象の拡散モデルを効果的に改善し, 計算効率と性能のバランスを良くすることを示す。
論文 参考訳(メタデータ) (2025-03-02T13:43:53Z) - Predictive Lagrangian Optimization for Constrained Reinforcement Learning [15.082498910832529]
制約付き最適化は、複雑な制御タスクに対処するための強化学習で一般的に見られる。
本稿では,制約付き最適化とフィードバック制御システムとの接続を構築するための,より汎用的な等価フレームワークを提案する。
論文 参考訳(メタデータ) (2025-01-25T13:39:45Z) - Comparison of Model Predictive Control and Proximal Policy Optimization for a 1-DOF Helicopter System [0.7499722271664147]
本研究は,Quanser Aero 2システムに適用された深層強化学習(DRL)アルゴリズムであるモデル予測制御(MPC)とPPOの比較分析を行う。
PPOは上昇時間と適応性に優れており、迅速な応答と適応性を必要とするアプリケーションには有望なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:35:34Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - Optimization of the Model Predictive Control Meta-Parameters Through
Reinforcement Learning [1.4069478981641936]
強化学習(RL)を用いて制御アルゴリズムの任意のパラメータを協調的に調整できる新しいフレームワークを提案する。
我々は,倒立振子制御タスクの枠組みを実証し,制御システムの総時間を36%削減するとともに,最高性能のMPCベースラインよりも18.4%向上した。
論文 参考訳(メタデータ) (2021-11-07T18:33:22Z) - Covert Model Poisoning Against Federated Learning: Algorithm Design and
Optimization [76.51980153902774]
フェデレーテッド・ラーニング(FL)はパラメータ伝達中にFLモデルに対する外部攻撃に対して脆弱である。
本稿では,最先端の防御アグリゲーション機構に対処する有効なMPアルゴリズムを提案する。
実験の結果,提案したCMPアルゴリズムは,既存の攻撃機構よりも効果的で,かなり優れていることが示された。
論文 参考訳(メタデータ) (2021-01-28T03:28:18Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。