Thermodynamic adsorption potential of superconductors
- URL: http://arxiv.org/abs/2507.09869v1
- Date: Mon, 14 Jul 2025 02:44:40 GMT
- Title: Thermodynamic adsorption potential of superconductors
- Authors: Jiu Hui Wu, Jiamin Niu, Kejiang Zhou,
- Abstract summary: We show that the composition and structure of superconductors are of course decisive for the adsorbation potential.<n>This theory could explain almost all common facts about high-temperature superconductors, including many anomalies of the normal and superconducting states.
- Score: 0.44241702149260353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Based on the general thermodynamic analysis of Polanyi adsorption potential, the adsorption potential condition for superconductors is obtained exactly by using the quantum state equation we presented. Because this adsorption potential results in changes of electron concentration, temperature and pressure in a certain volume (adsorption space) adjacent to the surface of the lattice, the composition and structure of superconductors are of course decisive for the adsorption potential. Then we calculate the molar adsorption potentials for those typical superconductors, and find that it is positively correlated to the superconductivity temperature , which reveals that those high-superconductors are mainly determined by the higher molar adsorption potentials. In addition, the adsorption potential at still works despite the disappearance of the energy gap of the BCS theory. This shows that beyond the electron-phonon interaction mechanism, the Cooper-paired electrons are mainly formed by this physical adsorption potential for high-superconductors. This adsorption potential theory could explain almost all common facts about high-temperature superconductors, including many anomalies of the normal and superconducting states.
Related papers
- Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Enhanced Quasiparticle Relaxation in a Superconductor via the Proximity Effect [3.2635025659132166]
We study the impact of a proximity layer on the transport of quasiparticles in a superconductor.<n>We find that a normal metal layer can be used to significantly increase the relaxation rate of quasiparticles in a superconductor.
arXiv Detail & Related papers (2024-09-08T22:12:20Z) - Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory [39.58317527488534]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Negative electrohydrostatic pressure between superconducting bodies [39.58317527488534]
We predict a negative (attractive) pressure between planar superconducting bodies.
The resulting surface energies are in better agreement than those predicted by the Hartree-Fock theory.
The model circumvents the bulk limitations of the Bardeen-Cooper-Schrieffer and Ginzburg-Landau theories.
arXiv Detail & Related papers (2023-07-10T21:08:22Z) - Anisotropic superconductivity of niobium based on its response to
non-magnetic disorder [0.0]
Niobium is one of the most studied superconductors, both theoretically and experimentally.
In addition to power applications in alloys, pure niobium is used for sensitive magneto-sensing, radio-frequency cavities, and, more recently, as circuit metallization layers in superconducting qubits.
arXiv Detail & Related papers (2022-07-28T22:24:27Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - Superfluid drag between excitonic polaritons and superconducting
electron gas [0.0]
The Andreev-Bashkin effect, or superfluid drag, is predicted in a system of Bose-condensed excitonic polaritons in optical microcavity.
The predicted nondissipative drag could be strong enough to be observable as induction of a supercurrent in the electronic layer by a flow of polariton Bose condensate.
arXiv Detail & Related papers (2022-04-22T15:04:46Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Discovery of Nb hydride precipitates in superconducting qubits [37.69303106863453]
We report the first evidence of the formation of niobium hydrides within niobium films on silicon in superconducting qubits fabricated at Rigetti Computing.
High-resolution transmission electron microscopy (HRTEM) analyses are performed at room and cryogenic temperatures (106 K) on superconducting qubit niobium film areas.
Our findings highlight a new previously unknown source of decoherence in superconducting qubits, contributing to both quasi and two-level system (TLS) losses.
arXiv Detail & Related papers (2021-08-23T20:01:38Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Information-theoretic measures of superconductivity in a two-dimensional
doped Mott insulator [0.0]
A key open issue in condensed matter physics is how quantum and classical correlations emerge in an unconventional superconductor from the underlying normal state.
We study this problem in a doped Mott insulator with information theory tools on the two-dimensional Hubbard model at finite temperature.
We find that the local entropy detects the superconducting state and that the difference in the local entropy between the superconducting and normal states follows the same difference in the potential energy.
arXiv Detail & Related papers (2021-06-29T16:35:15Z) - Observation of Distinct Superconducting Phases in Hyperdoped p-type
Germanium [0.0]
We report systematic synthesis and characterization of superconducting phases in hyperdoped Germanium.
Surprisingly, we find a nano-crystalline phase with quasi-2D characteristics consisting of a thin Ga film constrained near top surfaces.
Our results suggest the possibility of integration of hyperdoped Ge nano-crystalline phase into superconducting circuits due to its 2D nature.
arXiv Detail & Related papers (2020-08-13T18:06:40Z) - Thermoelectricity in Quantum-Hall Corbino Structures [48.7576911714538]
We measure the thermoelectric response of Corbino structures in the quantum Hall effect regime.
We predict a figure of merit for the efficiency of thermoelectric cooling which becomes very large for partially filled Landau levels.
arXiv Detail & Related papers (2020-03-03T19:19:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.