Resolution Revolution: A Physics-Guided Deep Learning Framework for Spatiotemporal Temperature Reconstruction
- URL: http://arxiv.org/abs/2507.09872v1
- Date: Mon, 14 Jul 2025 03:03:25 GMT
- Title: Resolution Revolution: A Physics-Guided Deep Learning Framework for Spatiotemporal Temperature Reconstruction
- Authors: Shengjie Liu, Lu Zhang, Siqin Wang,
- Abstract summary: Current technology allows for hourly temperature observations at 2 km, but only every 16 days at 100 m, a gap further exacerbated by cloud cover.<n>Here, we present a physics-guided deep learning framework for temperature data reconstruction that integrates two data sources.<n>The proposed framework uses a convolutional neural network that incorporates the annual temperature cycle and includes a linear term to amplify the coarse Earth system model output into fine-scale temperature values observed from satellites.
- Score: 5.6087513714958686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Central to Earth observation is the trade-off between spatial and temporal resolution. For temperature, this is especially critical because real-world applications require high spatiotemporal resolution data. Current technology allows for hourly temperature observations at 2 km, but only every 16 days at 100 m, a gap further exacerbated by cloud cover. Earth system models offer continuous hourly temperature data, but at a much coarser spatial resolution (9-31 km). Here, we present a physics-guided deep learning framework for temperature data reconstruction that integrates these two data sources. The proposed framework uses a convolutional neural network that incorporates the annual temperature cycle and includes a linear term to amplify the coarse Earth system model output into fine-scale temperature values observed from satellites. We evaluated this framework using data from two satellites, GOES-16 (2 km, hourly) and Landsat (100 m, every 16 days), and demonstrated effective temperature reconstruction with hold-out and in situ data across four datasets. This physics-guided deep learning framework opens new possibilities for generating high-resolution temperature data across spatial and temporal scales, under all weather conditions and globally.
Related papers
- FuseTen: A Generative Model for Daily 10 m Land Surface Temperature Estimation from Spatio-Temporal Satellite Observations [3.344876133162209]
Urban heatwaves, droughts, and land heatwaves are pressing and growing challenges in the context of climate change.<n>One of the most important variables for assessing and understanding these phenomena is Land Surface Temperature (LST)<n>We propose FuseTen to produce daily LST observations at a fine 10 m spatial resolution by fusing-basedtemporal observations from Landsat 8, and Terra MODIS.
arXiv Detail & Related papers (2025-07-30T23:04:16Z) - From Proxies to Fields: Spatiotemporal Reconstruction of Global Radiation from Sparse Sensor Sequences [0.38836072943850625]
TRON is trained on 22 years of simulation data and generalizes across 65,341 spatial locations.<n>TRON offers a domain-agnostic framework for scientific field reconstruction from sparse data, with applications in atmospheric modeling, geophysical hazard monitoring, and real-time environmental risk forecasting.
arXiv Detail & Related papers (2025-05-24T16:24:10Z) - CirT: Global Subseasonal-to-Seasonal Forecasting with Geometry-inspired Transformer [47.65152457550307]
We propose the geometric-inspired Circular Transformer (CirT) to model the cyclic characteristic of the graticule.<n>Experiments on the Earth Reanalysis 5 (ERA5) reanalysis dataset demonstrate our model yields a significant improvement over the advanced data-driven models.
arXiv Detail & Related papers (2025-02-27T04:26:23Z) - EarthView: A Large Scale Remote Sensing Dataset for Self-Supervision [72.84868704100595]
This paper presents a dataset specifically designed for self-supervision on remote sensing data, intended to enhance deep learning applications on Earth monitoring tasks.<n>The dataset spans 15 tera pixels of global remote-sensing data, combining imagery from a diverse range of sources, including NEON, Sentinel, and a novel release of 1m spatial resolution data from Satellogic.<n>Accompanying the dataset is EarthMAE, a tailored Masked Autoencoder developed to tackle the distinct challenges of remote sensing data.
arXiv Detail & Related papers (2025-01-14T13:42:22Z) - Global atmospheric data assimilation with multi-modal masked autoencoders [20.776143147372427]
"EarthNet" is a multi-modal foundation model for data assimilation.
It learns to predict a global gap-filled atmospheric state solely from satellite observations.
It produces a global 0.16 degree reanalysis dataset of 3D atmospheric temperature and humidity.
arXiv Detail & Related papers (2024-07-16T13:15:51Z) - DeepExtremeCubes: Integrating Earth system spatio-temporal data for impact assessment of climate extremes [5.736700805381591]
Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets.
Here, we introduce the DeepExtremes database, tailored to map around heatwave and drought extreme impact.
It comprises over 40,000 spatially sampled small data cubes (i.e. minicubes) globally, with a spatial coverage of 2.5 by 2.5 km.
arXiv Detail & Related papers (2024-06-26T08:53:26Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Federated Prompt Learning for Weather Foundation Models on Devices [37.88417074427373]
On-device intelligence for weather forecasting uses local deep learning models to analyze weather patterns without centralized cloud computing.
This paper propose Federated Prompt Learning for Weather Foundation Models on Devices (FedPoD)
FedPoD enables devices to obtain highly customized models while maintaining communication efficiency.
arXiv Detail & Related papers (2023-05-23T16:59:20Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Improving trajectory calculations using deep learning inspired single
image superresolution [0.0]
We train various versions of the state-of-the-art Enhanced Deep Residual Networks for Superresolution on low-resolution ERA5 reanalysis data.
We show that the resulting up-scaled wind fields have root-mean-squared half the size of the winds obtained with linear spatial inference.
arXiv Detail & Related papers (2022-06-07T14:28:05Z) - EarthNet2021: A novel large-scale dataset and challenge for forecasting
localized climate impacts [12.795776149170978]
Large Earth observation datasets now enable us to create machine learning models capable of translating coarse weather information into high-resolution Earth surface forecasts.
We define high-resolution Earth surface forecasting as video prediction of satellite imagery conditional on mesoscale weather forecasts.
We introduce EarthNet 2021, a new curated dataset containing target-temporal Sentinel 2 satellite imagery at 20 m resolution, matched with high-resolution topography and mesoscale (1.28 km) weather variables.
arXiv Detail & Related papers (2020-12-11T11:21:00Z) - 4Seasons: A Cross-Season Dataset for Multi-Weather SLAM in Autonomous Driving [43.09957836757648]
We present a novel dataset covering seasonal and challenging perceptual conditions for autonomous driving.<n>Among others, it enables research on visual odometry, global place recognition, and map-based re-localization tracking.
arXiv Detail & Related papers (2020-09-14T12:31:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.