Solving dynamic portfolio selection problems via score-based diffusion models
- URL: http://arxiv.org/abs/2507.09916v2
- Date: Mon, 21 Jul 2025 05:00:13 GMT
- Title: Solving dynamic portfolio selection problems via score-based diffusion models
- Authors: Ahmad Aghapour, Erhan Bayraktar, Fengyi Yuan,
- Abstract summary: We tackle the dynamic mean-variance portfolio selection problem in a it model-free manner, based on (generative) diffusion models.<n>We propose using data sampled from the real model $mathbb P$ with limited size to train a generative model $mathbb Q$.<n>With adaptive training and sampling methods that are tailor-made for time series data, we obtain bounds between $mathbb P$ and $mathbb Q$.
- Score: 3.8857791305699565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we tackle the dynamic mean-variance portfolio selection problem in a {\it model-free} manner, based on (generative) diffusion models. We propose using data sampled from the real model $\mathbb P$ (which is unknown) with limited size to train a generative model $\mathbb Q$ (from which we can easily and adequately sample). With adaptive training and sampling methods that are tailor-made for time series data, we obtain quantification bounds between $\mathbb P$ and $\mathbb Q$ in terms of the adapted Wasserstein metric $\mathcal A W_2$. Importantly, the proposed adapted sampling method also facilitates {\it conditional sampling}. In the second part of this paper, we provide the stability of the mean-variance portfolio optimization problems in $\mathcal A W _2$. Then, combined with the error bounds and the stability result, we propose a policy gradient algorithm based on the generative environment, in which our innovative adapted sampling method provides approximate scenario generators. We illustrate the performance of our algorithm on both simulated and real data. For real data, the algorithm based on the generative environment produces portfolios that beat several important baselines, including the Markowitz portfolio, the equal weight (naive) portfolio, and S\&P 500.
Related papers
- Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
We provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models.<n>We propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality.
arXiv Detail & Related papers (2025-03-04T17:46:51Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
Single-Index Models are high-dimensional regression problems with planted structure.
We show that computationally efficient algorithms, both within the Statistical Query (SQ) and the Low-Degree Polynomial (LDP) framework, necessarily require $Omega(dkstar/2)$ samples.
arXiv Detail & Related papers (2024-03-08T18:50:19Z) - Deep adaptive sampling for surrogate modeling without labeled data [4.047684532081032]
We present a deep adaptive sampling method for surrogate modeling ($textDAS2$)
In the parametric setting, the residual loss function can be regarded as an unnormalized probability density function.
New samples match the residual-induced distribution, the refined training set can further reduce the statistical error.
arXiv Detail & Related papers (2024-02-17T13:44:02Z) - Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Sparse Gaussian Graphical Models with Discrete Optimization:
Computational and Statistical Perspectives [8.403841349300103]
We consider the problem of learning a sparse graph underlying an undirected Gaussian graphical model.
We propose GraphL0BnB, a new estimator based on an $ell_0$-penalized version of the pseudolikelihood function.
Our numerical experiments on real/synthetic datasets suggest that our method can solve, to near-optimality, problem instances with $p = 104$.
arXiv Detail & Related papers (2023-07-18T15:49:02Z) - Near-Optimal Reward-Free Exploration for Linear Mixture MDPs with
Plug-in Solver [32.212146650873194]
We provide approaches to learn an RL model efficiently without the guidance of a reward signal.
In particular, we take a plug-in solver approach, where we focus on learning a model in the exploration phase.
We show that, by establishing a novel exploration algorithm, the plug-in approach learns a model by taking $tildeO(d2H3/epsilon2)$ interactions with the environment.
arXiv Detail & Related papers (2021-10-07T07:59:50Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z) - Breaking the Sample Size Barrier in Model-Based Reinforcement Learning
with a Generative Model [50.38446482252857]
This paper is concerned with the sample efficiency of reinforcement learning, assuming access to a generative model (or simulator)
We first consider $gamma$-discounted infinite-horizon Markov decision processes (MDPs) with state space $mathcalS$ and action space $mathcalA$.
We prove that a plain model-based planning algorithm suffices to achieve minimax-optimal sample complexity given any target accuracy level.
arXiv Detail & Related papers (2020-05-26T17:53:18Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z) - Learning the Stein Discrepancy for Training and Evaluating Energy-Based
Models without Sampling [30.406623987492726]
We present a new method for evaluating and training unnormalized density models.
We estimate the Stein discrepancy between the data density $p(x)$ and the model density $q(x)$ defined by a vector function of the data.
This yields a novel goodness-of-fit test which outperforms existing methods on high dimensional data.
arXiv Detail & Related papers (2020-02-13T16:39:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.