ESG-Net: Event-Aware Semantic Guided Network for Dense Audio-Visual Event Localization
- URL: http://arxiv.org/abs/2507.09945v1
- Date: Mon, 14 Jul 2025 05:42:00 GMT
- Title: ESG-Net: Event-Aware Semantic Guided Network for Dense Audio-Visual Event Localization
- Authors: Huilai Li, Yonghao Dang, Ying Xing, Yiming Wang, Jianqin Yin,
- Abstract summary: We introduce multi-stage semantic guidance and multi-event relationship modeling.<n>This enables hierarchical semantic understanding of audio-visual events and adaptive extraction of event dependencies.<n>Our method significantly surpasses the state-of-the-art methods, while greatly reducing parameters and computational load.
- Score: 14.920403124245867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense audio-visual event localization (DAVE) aims to identify event categories and locate the temporal boundaries in untrimmed videos. Most studies only employ event-related semantic constraints on the final outputs, lacking cross-modal semantic bridging in intermediate layers. This causes modality semantic gap for further fusion, making it difficult to distinguish between event-related content and irrelevant background content. Moreover, they rarely consider the correlations between events, which limits the model to infer concurrent events among complex scenarios. In this paper, we incorporate multi-stage semantic guidance and multi-event relationship modeling, which respectively enable hierarchical semantic understanding of audio-visual events and adaptive extraction of event dependencies, thereby better focusing on event-related information. Specifically, our eventaware semantic guided network (ESG-Net) includes a early semantics interaction (ESI) module and a mixture of dependency experts (MoDE) module. ESI applys multi-stage semantic guidance to explicitly constrain the model in learning semantic information through multi-modal early fusion and several classification loss functions, ensuring hierarchical understanding of event-related content. MoDE promotes the extraction of multi-event dependencies through multiple serial mixture of experts with adaptive weight allocation. Extensive experiments demonstrate that our method significantly surpasses the state-of-the-art methods, while greatly reducing parameters and computational load. Our code will be released on https://github.com/uchiha99999/ESG-Net.
Related papers
- EIFNet: Leveraging Event-Image Fusion for Robust Semantic Segmentation [0.18416014644193066]
Event cameras offer high dynamic range and fine temporal resolution, to achieve robust scene understanding in challenging environments.<n>We propose EIFNet, a multi-modal fusion network that combines the strengths of both event and frame-based inputs.<n>EIFNet achieves state-of-the-art performance, demonstrating its effectiveness in event-based semantic segmentation.
arXiv Detail & Related papers (2025-07-29T16:19:55Z) - Multimodal Class-aware Semantic Enhancement Network for Audio-Visual Video Parsing [22.655045848201528]
Capturing accurate event semantics for each audio/visual segment is vital.<n>Each segment may contain multiple events, resulting in semantically mixed holistic features.<n>We propose a Fine-Grained Semantic Enhancement module for encoding intra- and cross-modal relations.
arXiv Detail & Related papers (2024-12-15T16:54:53Z) - Grounding Partially-Defined Events in Multimodal Data [61.0063273919745]
We introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task.
We propose a benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities.
Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
arXiv Detail & Related papers (2024-10-07T17:59:48Z) - Generating Event-oriented Attribution for Movies via Two-Stage Prefix-Enhanced Multimodal LLM [47.786978666537436]
We propose a Two-Stage Prefix-Enhanced MLLM (TSPE) approach for event attribution in movie videos.
In the local stage, we introduce an interaction-aware prefix that guides the model to focus on the relevant multimodal information within a single clip.
In the global stage, we strengthen the connections between associated events using an inferential knowledge graph.
arXiv Detail & Related papers (2024-09-14T08:30:59Z) - Label-anticipated Event Disentanglement for Audio-Visual Video Parsing [61.08434062821899]
We introduce a new decoding paradigm, underlinelabel sunderlineemunderlineantic-based underlineprojection (LEAP)
LEAP works by iteratively projecting encoded latent features of audio/visual segments onto semantically independent label embeddings.
To facilitate the LEAP paradigm, we propose a semantic-aware optimization strategy, which includes a novel audio-visual semantic similarity loss function.
arXiv Detail & Related papers (2024-07-11T01:57:08Z) - Leveraging the Video-level Semantic Consistency of Event for
Audio-visual Event Localization [8.530561069113716]
We propose a novel video-level semantic consistency guidance network for the AVE localization task.
It consists of two components: a cross-modal event representation extractor and an intra-modal semantic consistency enhancer.
We perform extensive experiments on the public AVE dataset and outperform the state-of-the-art methods in both fully- and weakly-supervised settings.
arXiv Detail & Related papers (2022-10-11T08:15:57Z) - Unifying Event Detection and Captioning as Sequence Generation via
Pre-Training [53.613265415703815]
We propose a unified pre-training and fine-tuning framework to enhance the inter-task association between event detection and captioning.
Our model outperforms the state-of-the-art methods, and can be further boosted when pre-trained on extra large-scale video-text data.
arXiv Detail & Related papers (2022-07-18T14:18:13Z) - Beyond Grounding: Extracting Fine-Grained Event Hierarchies Across
Modalities [43.048896440009784]
We propose the task of extracting event hierarchies from multimodal (video and text) data.
This reveals the structure of events and is critical to understanding them.
We show the limitations of state-of-the-art unimodal and multimodal baselines on this task.
arXiv Detail & Related papers (2022-06-14T23:24:15Z) - Learning Constraints and Descriptive Segmentation for Subevent Detection [74.48201657623218]
We propose an approach to learning and enforcing constraints that capture dependencies between subevent detection and EventSeg prediction.
We adopt Rectifier Networks for constraint learning and then convert the learned constraints to a regularization term in the loss function of the neural model.
arXiv Detail & Related papers (2021-09-13T20:50:37Z) - Multi-Modulation Network for Audio-Visual Event Localization [138.14529518908736]
We study the problem of localizing audio-visual events that are both audible and visible in a video.
Existing works focus on encoding and aligning audio and visual features at the segment level.
We propose a novel MultiModulation Network (M2N) to learn the above correlation and leverage it as semantic guidance.
arXiv Detail & Related papers (2021-08-26T13:11:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.