On The Role of Intentionality in Knowledge Representation: Analyzing Scene Context for Cognitive Agents with a Tiny Language Model
- URL: http://arxiv.org/abs/2507.10000v1
- Date: Mon, 14 Jul 2025 07:34:58 GMT
- Title: On The Role of Intentionality in Knowledge Representation: Analyzing Scene Context for Cognitive Agents with a Tiny Language Model
- Authors: Mark Burgess,
- Abstract summary: Promise Theory's model of Semantic Spacetime is used as an effective Tiny Language Model.<n>One can identify themes and concepts from a text on a low level.<n>Scale separation can be used to sort parts into intended' content and ambient context'
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since Searle's work deconstructing intent and intentionality in the realm of philosophy, the practical meaning of intent has received little attention in science and technology. Intentionality and context are both central to the scope of Promise Theory's model of Semantic Spacetime, used as an effective Tiny Language Model. One can identify themes and concepts from a text, on a low level (without knowledge of the specific language) by using process coherence as a guide. Any agent process can assess superficially a degree of latent `intentionality' in data by looking for anomalous multi-scale anomalies and assessing the work done to form them. Scale separation can be used to sort parts into `intended' content and `ambient context', using the spacetime coherence as a measure. This offers an elementary but pragmatic interpretation of latent intentionality for very low computational cost, and without reference to extensive training or reasoning capabilities. The process is well within the reach of basic organisms as it does not require large scale artificial probabilistic batch processing. The level of concept formation depends, however, on the memory capacity of the agent.
Related papers
- Can Large Language Models Follow Concept Annotation Guidelines? A Case Study on Scientific and Financial Domains [19.814974042343028]
We examine the capacity of instruction-tuned language models to follow in-context concept guidelines for sentence labeling tasks.
Our results show that although concept definitions consistently help in task performance, only the larger models have limited ability to work under counterfactual contexts.
arXiv Detail & Related papers (2023-11-15T05:11:26Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - A Geometric Notion of Causal Probing [85.49839090913515]
The linear subspace hypothesis states that, in a language model's representation space, all information about a concept such as verbal number is encoded in a linear subspace.<n>We give a set of intrinsic criteria which characterize an ideal linear concept subspace.<n>We find that, for at least one concept across two languages models, the concept subspace can be used to manipulate the concept value of the generated word with precision.
arXiv Detail & Related papers (2023-07-27T17:57:57Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
Pragmatic reasoning plays a pivotal role in deciphering implicit meanings that frequently arise in real-life conversations.
We introduce a novel challenge, DiPlomat, aiming at benchmarking machines' capabilities on pragmatic reasoning and situated conversational understanding.
arXiv Detail & Related papers (2023-06-15T10:41:23Z) - Natural Language Decompositions of Implicit Content Enable Better Text Representations [52.992875653864076]
We introduce a method for the analysis of text that takes implicitly communicated content explicitly into account.<n>We use a large language model to produce sets of propositions that are inferentially related to the text that has been observed.<n>Our results suggest that modeling the meanings behind observed language, rather than the literal text alone, is a valuable direction for NLP.
arXiv Detail & Related papers (2023-05-23T23:45:20Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
The black-box structure of the deep neural network in pre-trained language models seriously limits the interpretability of the language modeling process.
A Word-Context-Coupled Space (W2CSpace) is proposed by introducing the alignment processing between uninterpretable neural representation and interpretable statistical logic.
Our language model can achieve better performance and highly credible interpretable ability compared to related state-of-the-art methods.
arXiv Detail & Related papers (2023-05-19T09:26:02Z) - Disentangling Learnable and Memorizable Data via Contrastive Learning
for Semantic Communications [81.10703519117465]
A novel machine reasoning framework is proposed to disentangle source data so as to make it semantic-ready.
In particular, a novel contrastive learning framework is proposed, whereby instance and cluster discrimination are performed on the data.
Deep semantic clusters of highest confidence are considered learnable, semantic-rich data.
Our simulation results showcase the superiority of our contrastive learning approach in terms of semantic impact and minimalism.
arXiv Detail & Related papers (2022-12-18T12:00:12Z) - Relate to Predict: Towards Task-Independent Knowledge Representations
for Reinforcement Learning [11.245432408899092]
Reinforcement Learning can enable agents to learn complex tasks.
It is difficult to interpret the knowledge and reuse it across tasks.
In this paper, we introduce an inductive bias for explicit object-centered knowledge separation.
We show that the degree of explicitness in knowledge separation correlates with faster learning, better accuracy, better generalization, and better interpretability.
arXiv Detail & Related papers (2022-12-10T13:33:56Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
We investigate the use of quantized vectors to model the latent linguistic embedding.
By enforcing different policies over the latent spaces in the training, we are able to obtain a latent linguistic embedding.
Our experiments show that the voice cloning system built with vector quantization has only a small degradation in terms of perceptive evaluations.
arXiv Detail & Related papers (2021-06-25T07:51:35Z) - Unsupervised Lexical Acquisition of Relative Spatial Concepts Using
Spoken User Utterances [0.0]
A robot with a flexible spoken dialog system must be able to acquire linguistic representation.
Relative spatial concepts are widely used in our daily lives.
It is not obvious which object is a reference object when a robot learns relative spatial concepts.
arXiv Detail & Related papers (2021-06-16T06:44:27Z) - Testing the Quantitative Spacetime Hypothesis using Artificial Narrative
Comprehension (I) : Bootstrapping Meaning from Episodic Narrative viewed as a
Feature Landscape [0.0]
This work studies the problem of extracting meaningful parts of a sensory data stream, without prior training, by using symbolic sequences.
Using lightweight procedures that can be run in just a few seconds on a single CPU, this work studies the validity of the Semantic Spacetime Hypothesis.
The results suggest that what we consider important and interesting about sensory experience is not solely based on higher reasoning, but on simple spacetime process cues, and this may be how cognitive processing is bootstrapped in the beginning.
arXiv Detail & Related papers (2020-09-23T11:10:12Z) - Emergence of Pragmatics from Referential Game between Theory of Mind
Agents [64.25696237463397]
We propose an algorithm, using which agents can spontaneously learn the ability to "read between lines" without any explicit hand-designed rules.
We integrate the theory of mind (ToM) in a cooperative multi-agent pedagogical situation and propose an adaptive reinforcement learning (RL) algorithm to develop a communication protocol.
arXiv Detail & Related papers (2020-01-21T19:37:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.