論文の概要: Lightweight Model for Poultry Disease Detection from Fecal Images Using Multi-Color Space Feature Optimization and Machine Learning
- arxiv url: http://arxiv.org/abs/2507.10056v1
- Date: Mon, 14 Jul 2025 08:40:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 20:53:35.151031
- Title: Lightweight Model for Poultry Disease Detection from Fecal Images Using Multi-Color Space Feature Optimization and Machine Learning
- Title(参考訳): マルチカラー空間特徴最適化と機械学習を用いた糞便画像からの鶏肉病検出のための軽量モデル
- Authors: A. K. M. Shoriful Islam, Md. Rakib Hassan, Macbah Uddin, Md. Shahidur Rahman,
- Abstract要約: 養鶏は世界の食糧サプライチェーンの重要な要素であるが、感染症に非常に脆弱である。
本研究では,養鶏糞のイメージを解析することにより,これらの疾患を検出するための軽量機械学習アプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Poultry farming is a vital component of the global food supply chain, yet it remains highly vulnerable to infectious diseases such as coccidiosis, salmonellosis, and Newcastle disease. This study proposes a lightweight machine learning-based approach to detect these diseases by analyzing poultry fecal images. We utilize multi-color space feature extraction (RGB, HSV, LAB) and explore a wide range of color, texture, and shape-based descriptors, including color histograms, local binary patterns (LBP), wavelet transforms, and edge detectors. Through a systematic ablation study and dimensionality reduction using PCA and XGBoost feature selection, we identify a compact global feature set that balances accuracy and computational efficiency. An artificial neural network (ANN) classifier trained on these features achieved 95.85% accuracy while requiring no GPU and only 638 seconds of execution time in Google Colab. Compared to deep learning models such as Xception and MobileNetV3, our proposed model offers comparable accuracy with drastically lower resource usage. This work demonstrates a cost-effective, interpretable, and scalable alternative to deep learning for real-time poultry disease detection in low-resource agricultural settings.
- Abstract(参考訳): 養鶏は世界の食糧供給連鎖の重要な要素であるが、コクシドーシス、サルモネラ症、ニューカッスル病などの感染症に非常に脆弱である。
本研究では,養鶏糞のイメージを解析することにより,これらの疾患を検出するための軽量機械学習アプローチを提案する。
マルチカラー空間特徴抽出(RGB, HSV, LAB)を用いて,色ヒストグラム,局所二分パターン(LBP),ウェーブレット変換,エッジ検出器などの多彩な色,テクスチャ,形状に基づく記述子を探索する。
そこで我々は,PCAとXGBoostの特徴選択を用いた体系的アブレーション研究と次元削減により,精度と計算効率のバランスをとるコンパクトなグローバル特徴集合を同定した。
これらの特徴に基づいてトレーニングされた人工知能ニューラルネットワーク(ANN)分類器は、GPUを必要とせず、Google Colabで実行時間638秒しか必要とせず、95.85%の精度を達成した。
XceptionやMobileNetV3といったディープラーニングモデルと比較して,提案モデルでは,リソース使用量を大幅に削減した精度を実現している。
この研究は、低資源農業環境におけるリアルタイム養鶏病検出のためのディープラーニングに代わる、コスト効率、解釈可能、スケーラブルな代替手段を示す。
関連論文リスト
- A Lightweight and Robust Framework for Real-Time Colorectal Polyp Detection Using LOF-Based Preprocessing and YOLO-v11n [0.3495246564946556]
本研究では,ポリプ検出のための新しい,軽量で効率的なフレームワークを提案する。
ノイズの多いデータをフィルタリングするLocal Outlier Factorアルゴリズムと、YOLO-v11nディープラーニングモデルを組み合わせる。
従来のYOLO法と比較して精度と効率が向上した。
論文 参考訳(メタデータ) (2025-07-14T23:36:54Z) - Automated Multi-Class Crop Pathology Classification via Convolutional Neural Networks: A Deep Learning Approach for Real-Time Precision Agriculture [0.0]
本研究では,コンボリューショナルニューラルネットワーク(CNN)を用いた画像分類システムを提案する。
このソリューションは、オープンソースでモバイル互換のプラットフォーム上にデプロイされ、リモートエリアの農家に対してリアルタイムの画像ベースの診断を可能にする。
論文 参考訳(メタデータ) (2025-07-12T18:45:50Z) - PixCell: A generative foundation model for digital histopathology images [49.00921097924924]
PixCellは,病理組織学における最初の拡散ベース生成基盤モデルである。
われわれはPanCan-30MでPixCellをトレーニングした。
論文 参考訳(メタデータ) (2025-06-05T15:14:32Z) - SugarViT -- Multi-objective Regression of UAV Images with Vision
Transformers and Deep Label Distribution Learning Demonstrated on Disease
Severity Prediction in Sugar Beet [3.2925222641796554]
この研究は、大規模植物固有の特徴アノテーションを自動化するための機械学習フレームワークを導入する。
我々は、SugarViTと呼ばれる重症度評価のための効率的なビジョントランスフォーマーモデルを開発した。
この特殊なユースケースでモデルは評価されるが、様々な画像に基づく分類や回帰タスクにも可能な限り汎用的に適用可能である。
論文 参考訳(メタデータ) (2023-11-06T13:01:17Z) - Building Flyweight FLIM-based CNNs with Adaptive Decoding for Object
Detection [40.97322222472642]
本研究では、ユーザ描画マーカーからオブジェクトを検出するために、畳み込みニューラルネットワーク(CNN)層を構築する方法を提案する。
糞便サンプルの顕微鏡画像におけるSchistosomiasis mansoni卵の検出と,衛星画像における船舶の検出に対処する。
我々のCNNは、SOTAオブジェクト検出器より数千倍も小さく、CPU実行に適している。
論文 参考訳(メタデータ) (2023-06-26T16:48:20Z) - A fast accurate fine-grain object detection model based on YOLOv4 deep
neural network [0.0]
商業農場や果樹園における植物病の早期発見と予防は、精密農業技術の重要な特徴である。
本稿では,植物病の検出におけるいくつかの障害に対処する高性能なリアルタイム微粒物検出フレームワークを提案する。
提案するモデルは、You Only Look Once (YOLOv4)アルゴリズムの改良版に基づいて構築されている。
論文 参考訳(メタデータ) (2021-10-30T17:56:13Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Artificial intelligence for detection and quantification of rust and
leaf miner in coffee crop [0.0]
コーヒーの葉に錆(Hemileia vastatrix)と葉の鉱夫(Leucoptera coffeella)を検出するアルゴリズムを作成します。
モデル推論のための高レベルインタフェースとして,モバイルアプリケーションを用いて病気の重症度を定量化する。
論文 参考訳(メタデータ) (2021-03-20T20:52:11Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - FocusLiteNN: High Efficiency Focus Quality Assessment for Digital
Pathology [42.531674974834544]
本稿では,ハードウェアの過剰な要求を伴わずに,知識駆動方式と同様の高速な計算を行うCNNベースのモデルを提案する。
FocusPathを使って、9つの異なる色の組織スライドを含むトレーニングデータセットを作成します。
CNNの複雑さを減らそうとする試みでは、CNNを最小レベルまで縮小しても、競争力の高いパフォーマンスを実現しているのが驚きです。
論文 参考訳(メタデータ) (2020-07-11T20:52:01Z) - An interpretable classifier for high-resolution breast cancer screening
images utilizing weakly supervised localization [45.00998416720726]
医用画像の特徴に対処する枠組みを提案する。
このモデルはまず、画像全体の低容量だがメモリ効率のよいネットワークを使用して、最も情報性の高い領域を識別する。
次に、選択したリージョンから詳細を収集するために、別の高容量ネットワークを適用します。
最後に、グローバルおよびローカル情報を集約して最終的な予測を行うフュージョンモジュールを使用する。
論文 参考訳(メタデータ) (2020-02-13T15:28:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。