論文の概要: Wavelet-Enhanced Neural ODE and Graph Attention for Interpretable Energy Forecasting
- arxiv url: http://arxiv.org/abs/2507.10132v1
- Date: Mon, 14 Jul 2025 10:23:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:24.667799
- Title: Wavelet-Enhanced Neural ODE and Graph Attention for Interpretable Energy Forecasting
- Title(参考訳): ウェーブレット強化ニューラルオーダと解釈可能エネルギー予測のためのグラフアテンション
- Authors: Usman Gani Joy,
- Abstract要約: 本稿では、連続時間ニューラル正規微分方程式(Neural ODE)とグラフアテンションを統合するニューラルネットワークフレームワークを提案する。
多様なマルチスケールの時間的ダイナミクスを捕捉し、モデル化する。
このモデルはSHAP分析により解釈可能性を高め、持続可能なエネルギー応用に適合する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate forecasting of energy demand and supply is critical for optimizing sustainable energy systems, yet it is challenged by the variability of renewable sources and dynamic consumption patterns. This paper introduces a neural framework that integrates continuous-time Neural Ordinary Differential Equations (Neural ODEs), graph attention, multi-resolution wavelet transformations, and adaptive learning of frequencies to address the issues of time series prediction. The model employs a robust ODE solver, using the Runge-Kutta method, paired with graph-based attention and residual connections to better understand both structural and temporal patterns. Through wavelet-based feature extraction and adaptive frequency modulation, it adeptly captures and models diverse, multi-scale temporal dynamics. When evaluated across seven diverse datasets: ETTh1, ETTh2, ETTm1, ETTm2 (electricity transformer temperature), and Waste, Solar, and Hydro (renewable energy), this architecture consistently outperforms state-of-the-art baselines in various forecasting metrics, proving its robustness in capturing complex temporal dependencies. Furthermore, the model enhances interpretability through SHAP analysis, making it suitable for sustainable energy applications.
- Abstract(参考訳): エネルギー需要と供給の正確な予測は、持続可能エネルギーシステムの最適化に不可欠であるが、再生可能エネルギーの変動と動的消費パターンによっても問題視されている。
本稿では、連続時間ニューラル正規微分方程式(Neural ODE)、グラフアテンション、マルチレゾリューションウェーブレット変換、周波数適応学習を統合し、時系列予測の問題に対処するニューラルネットワークフレームワークを提案する。
このモデルは堅牢なODEソルバを用いており、構造パターンと時間パターンの両方をよりよく理解するために、グラフベースの注意と残差接続との組み合わせであるRunge-Kutta法を用いている。
ウェーブレットに基づく特徴抽出と適応周波数変調により、多種多様な時間的ダイナミックスを網羅し、モデル化する。
ETTh1、ETTh2、ETTm1、ETTm2(電気変圧器温度)、廃棄物、太陽、水力(再生可能エネルギー)の7つの多様なデータセットで評価されると、このアーキテクチャは様々な予測指標における最先端のベースラインを一貫して上回り、複雑な時間的依存関係を捕捉する堅牢性を証明している。
さらに、このモデルはSHAP分析により解釈可能性を高め、持続可能なエネルギー応用に適している。
関連論文リスト
- Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
我々はFNFをバックボーンとして、DBDをアーキテクチャとして導入し、空間時間モデルのための優れた学習能力と最適な学習経路を提供する。
FNFは、局所時間領域とグローバル周波数領域の情報処理を単一のバックボーン内で統合し、空間的モデリングに自然に拡張することを示す。
論文 参考訳(メタデータ) (2025-06-10T18:40:20Z) - A PID-Controlled Tensor Wheel Decomposition Model for Dynamic Link Prediction [3.525733859925913]
本研究では, PID制御型テンソルホイール分解(PTWD)モデルについて述べる。
提案するPTWDモデルは,他のモデルと比較して高精度なリンク予測機能を有する。
論文 参考訳(メタデータ) (2025-05-20T11:14:30Z) - Enhanced Photovoltaic Power Forecasting: An iTransformer and LSTM-Based Model Integrating Temporal and Covariate Interactions [16.705621552594643]
既存のモデルは、しばしばターゲット変数と共変量の間の複雑な関係を捉えるのに苦労する。
対象変数からの特徴抽出にiTransformerを利用する新しいモデルアーキテクチャを提案する。
クロスアテンション機構は両方のモデルの出力を融合するために統合され、続いてコルモゴロフ・アルノルドネットワークマッピングが続く。
その結果, PV発電の季節変動を効果的に把握し, 予測精度を向上することが示唆された。
論文 参考訳(メタデータ) (2024-12-03T09:16:13Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間列を表現するために設計された新しい深部力学モデルを提案する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
振動系, ビデオ, 実世界の状態系列(MuJoCo)の実験結果から, 学習可能なエネルギーベース先行モデルの方が既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Statistical and machine learning approaches for prediction of long-time
excitation energy transfer dynamics [0.0]
ここでの目的は、SARIMA、CatBoost、Prophet、畳み込み、反復ニューラルネットワークのようなモデルがこの要件を回避できるかどうかを示すことである。
以上の結果から,SARIMAモデルが長期力学の予測を行うための計算コストが安価かつ正確な方法として機能することが示唆された。
論文 参考訳(メタデータ) (2022-10-25T16:50:26Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。