Riding the Carousel: The First Extensive Eye Tracking Analysis of Browsing Behavior in Carousel Recommenders
- URL: http://arxiv.org/abs/2507.10135v1
- Date: Mon, 14 Jul 2025 10:26:27 GMT
- Title: Riding the Carousel: The First Extensive Eye Tracking Analysis of Browsing Behavior in Carousel Recommenders
- Authors: Santiago de Leon-Martinez, Robert Moro, Branislav Kveton, Maria Bielikova,
- Abstract summary: We provide the first extensive analysis of the eye tracking behavior in carousel recommenders under the free-browsing setting.<n>This work addresses a gap in the field and provides the first extensive empirical results of eye tracked browsing behavior in carousels for improving recommenders.
- Score: 12.234011238060134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Carousels have become the de-facto interface in online services. However, there is a lack of research in carousels, particularly examining how recommender systems may be designed differently than the traditional single-list interfaces. One of the key elements for understanding how to design a system for a particular interface is understanding how users browse. For carousels, users may browse in a number of different ways due to the added complexity of multiple topic defined-lists and swiping to see more items. Eye tracking is the key to understanding user behavior by providing valuable, direct information on how users see and navigate. In this work, we provide the first extensive analysis of the eye tracking behavior in carousel recommenders under the free-browsing setting. To understand how users browse, we examine the following research questions : 1) where do users start browsing, 2) how do users transition from item to item within the same carousel and across carousels, and 3) how does genre preference impact transitions? This work addresses a gap in the field and provides the first extensive empirical results of eye tracked browsing behavior in carousels for improving recommenders. Taking into account the insights learned from the above questions, our final contribution is to provide suggestions to help carousel recommender system designers optimize their systems for user browsing behavior. The most important suggestion being to reorder the ranked item positions to account for browsing after swiping.These contributions aim not only to help improve current systems, but also to encourage and allow the design of new user models, systems, and metrics that are better suited to the complexity of carousel interfaces.
Related papers
- RecGaze: The First Eye Tracking and User Interaction Dataset for Carousel Interfaces [58.695627866883065]
We introduce the RecGaze dataset: the first comprehensive feedback dataset on carousels.<n>The dataset comprises of interactions from 3 movie selection tasks with 40 different carousel interfaces per user.<n>We provide results of a survey on carousel design and the first analysis of gaze data on carousels, which reveals a golden triangle or F-pattern browsing behavior.
arXiv Detail & Related papers (2025-04-29T14:09:20Z) - Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
We propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions.<n>For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual semi-bandit in the PVisRec setting.
arXiv Detail & Related papers (2025-02-05T17:14:45Z) - Beyond Positive History: Re-ranking with List-level Hybrid Feedback [49.52149227298746]
We propose Re-ranking with List-level Hybrid Feedback (dubbed RELIFE)
It captures user's preferences and behavior patterns with three modules.
Experiments show that RELIFE significantly outperforms SOTA re-ranking baselines.
arXiv Detail & Related papers (2024-10-28T06:39:01Z) - Leveraging User-Generated Reviews for Recommender Systems with Dynamic Headers [5.464901224450247]
E-commerce platforms have a vast catalog of items to cater to their customers' shopping interests.
Many models have been proposed in academic literature to generate and enhance the ranking and recall set of items in these carousels.
This work proposes a novel approach to customize the header generation process of these carousels.
arXiv Detail & Related papers (2024-09-11T21:18:21Z) - Modeling Domain and Feedback Transitions for Cross-Domain Sequential Recommendation [60.09293734134179]
$textTransition2$ is a novel method to model transitions across both domains and types of user feedback.<n>We encode the user history using a cross-transition multi-head self-attention, incorporating various masks to distinguish different types of transitions.
arXiv Detail & Related papers (2024-08-15T15:18:55Z) - Sequential Modeling with Multiple Attributes for Watchlist
Recommendation in E-Commerce [67.6615871959902]
We study the watchlist functionality in e-commerce and introduce a novel watchlist recommendation task.
Our goal is to prioritize which watchlist items the user should pay attention to next by predicting the next items the user will click.
Our proposed recommendation model, Trans2D, is built on top of the Transformer architecture.
arXiv Detail & Related papers (2021-10-18T10:02:15Z) - Measuring the User Satisfaction in a Recommendation Interface with
Multiple Carousels [7.8851236034886645]
It is common for video-on-demand and music streaming services to adopt a user interface composed of several recommendation lists.
We propose a two-dimensional evaluation protocol for a carousel setting that will measure the quality of a recommendation carousel.
arXiv Detail & Related papers (2021-05-14T20:33:51Z) - A Methodology for the Offline Evaluation of Recommender Systems in a
User Interface with Multiple Carousels [7.8851236034886645]
Video-on-demand and music streaming services provide the user with a page consisting of several recommendation lists.
Finding efficient strategies to select which carousels to display is an active research topic of great industrial interest.
We propose an offline evaluation protocol for a carousel setting in which the recommendation quality of a model is measured by how much it improves upon that of an already available set of carousels.
arXiv Detail & Related papers (2021-05-13T13:14:59Z) - A Real-Time Whole Page Personalization Framework for E-Commerce [13.254747746069139]
E-commerce platforms contain multiple carousels on their homepage.
Items within a carousel may change dynamically based on sequential user actions.
We present a scalable end-to-end production system to optimally rank item-carousels in real-time on the Walmart online grocery homepage.
arXiv Detail & Related papers (2020-12-08T19:08:41Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.