A PBN-RL-XAI Framework for Discovering a "Hit-and-Run" Therapeutic Strategy in Melanoma
- URL: http://arxiv.org/abs/2507.10136v4
- Date: Thu, 24 Jul 2025 04:04:13 GMT
- Title: A PBN-RL-XAI Framework for Discovering a "Hit-and-Run" Therapeutic Strategy in Melanoma
- Authors: Zhonglin Liu,
- Abstract summary: Innate resistance to anti-PD-1 immunotherapy remains a major clinical challenge in melanoma.<n>We constructed a dynamic Probabilistic Boolean Network model using transcriptomic data from patient tumor biopsies.<n>A precisely timed, 4-step temporary inhibition of the lysyl oxidase like 2 protein (LOXL2) was the most effective strategy.
- Score: 0.8158530638728501
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Innate resistance to anti-PD-1 immunotherapy remains a major clinical challenge in metastatic melanoma, with the underlying molecular networks being poorly understood. To address this, we constructed a dynamic Probabilistic Boolean Network model using transcriptomic data from patient tumor biopsies to elucidate the regulatory logic governing therapy response. We then employed a reinforcement learning agent to systematically discover optimal, multi-step therapeutic interventions and used explainable artificial intelligence to mechanistically interpret the agent's control policy. The analysis revealed that a precisely timed, 4-step temporary inhibition of the lysyl oxidase like 2 protein (LOXL2) was the most effective strategy. Our explainable analysis showed that this ''hit-and-run" intervention is sufficient to erase the molecular signature driving resistance, allowing the network to self-correct without requiring sustained intervention. This study presents a novel, time-dependent therapeutic hypothesis for overcoming immunotherapy resistance and provides a powerful computational framework for identifying non-obvious intervention protocols in complex biological systems.
Related papers
- AUTOCT: Automating Interpretable Clinical Trial Prediction with LLM Agents [47.640779069547534]
AutoCT is a novel framework that combines the reasoning capabilities of large language models with the explainability of classical machine learning.<n>We show that AutoCT performs on par with or better than SOTA methods on clinical trial prediction tasks within only a limited number of self-refinement iterations.
arXiv Detail & Related papers (2025-06-04T11:50:55Z) - Harnessing Preference Optimisation in Protein LMs for Hit Maturation in Cell Therapy [0.5315454965484603]
Cell and immunotherapy offer transformative potential for treating diseases like cancer and autoimmune disorders by modulating the immune system.<n>The development of these therapies is resource-intensive, with the majority of drug candidates failing to progress beyond laboratory testing.<n>Recent advances in machine learning have revolutionised areas such as protein engineering, applications in immunotherapy remain limited due to the scarcity of large-scale, standardised datasets and the complexity of cellular systems.
arXiv Detail & Related papers (2024-12-02T11:21:58Z) - Explainable Artificial Intelligence Techniques for Irregular Temporal Classification of Multidrug Resistance Acquisition in Intensive Care Unit Patients [7.727213847237959]
This study introduces a novel methodology that integrates Gated Recurrent Units (GRUs) with advanced intrinsic and post-hoc interpretability techniques.
Our methodology aims to identify specific risk factors associated with Multidrug-Resistant (MDR) infections in ICU patients.
arXiv Detail & Related papers (2024-07-24T11:12:01Z) - Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
Large Language Models (LLMs) have emerged as powerful tools to navigate this complex data landscape.
RAGGED is a comprehensive workflow designed to support investigators with knowledge integration and hypothesis generation.
arXiv Detail & Related papers (2024-07-17T07:44:18Z) - Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
Conditional generation based on the target IC50 score can obtain a more effective sampling space.
Regressor-free guidance combines a diffusion model's score estimation with a regression controller model's gradient based on number labels.
arXiv Detail & Related papers (2024-05-23T13:22:17Z) - An AI-enabled Agent-Based Model and Its Application in Measles Outbreak
Simulation for New Zealand [5.4017711896476905]
Agent Based Models (ABMs) have emerged as a powerful tool for investigating complex social interactions.
We have developed a tensorized and differentiable agent-based model by coupling Graph Neural Network (GNN) and Long Short-Term Memory (LSTM) network.
This paper shows that by leveraging the latest Artificial Intelligence (AI) technology and the capabilities of traditional ABMs, we gain deeper insights into the dynamics of infectious disease outbreaks.
arXiv Detail & Related papers (2024-03-06T03:36:07Z) - Non-Linear Self Augmentation Deep Pipeline for Cancer Treatment outcome
Prediction [7.455416595124159]
Authors present an innovative strategy that harnesses a non-linear cellular architecture in conjunction with a deep downstream classifier.
This approach aims to carefully select and enhance 2D features extracted from chest-abdomen CT images, thereby improving the prediction of treatment outcomes.
The proposed pipeline has been meticulously designed to seamlessly integrate with an advanced embedded Point of Care system.
arXiv Detail & Related papers (2023-07-26T15:01:26Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGlioma is an artificial-intelligence-based diagnostic screening system.
DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy.
arXiv Detail & Related papers (2023-03-23T18:50:18Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS (Controlled Latent attribute Space Sampling) is an efficient computational method for attribute-controlled generation of molecules.
We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations.
The proposed approach is demonstrated for designing non-toxic antimicrobial peptides (AMPs) with strong broad-spectrum potency.
arXiv Detail & Related papers (2020-05-22T15:57:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.