論文の概要: Learning Private Representations through Entropy-based Adversarial Training
- arxiv url: http://arxiv.org/abs/2507.10194v1
- Date: Mon, 14 Jul 2025 12:01:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 20:53:35.151895
- Title: Learning Private Representations through Entropy-based Adversarial Training
- Title(参考訳): エントロピーに基づく対人訓練による個人表現の学習
- Authors: Tassilo Klein, Moin Nabi,
- Abstract要約: 学習した表現からセンシティブなコンテンツを衛生化するための逆表現学習法を提案する。
具体的には、既存のエントロピーに基づくアプローチの潜在的な情報漏洩を緩和するエントロピー-焦点エントロピーの変種を導入する。
- 参考スコア(独自算出の注目度): 21.341749351654453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How can we learn a representation with high predictive power while preserving user privacy? We present an adversarial representation learning method for sanitizing sensitive content from the learned representation. Specifically, we introduce a variant of entropy - focal entropy, which mitigates the potential information leakage of the existing entropy-based approaches. We showcase feasibility on multiple benchmarks. The results suggest high target utility at moderate privacy leakage.
- Abstract(参考訳): ユーザのプライバシを保ちながら高い予測力で表現を学習するにはどうすればいいのか?
学習した表現からセンシティブなコンテンツを衛生化するための逆表現学習法を提案する。
具体的には、既存のエントロピーに基づくアプローチの潜在的な情報漏洩を緩和するエントロピー-焦点エントロピーの変種を導入する。
複数のベンチマークで実現可能性を示す。
その結果、プライバシー漏洩の度合いの高いターゲットユーティリティが示唆された。
関連論文リスト
- Ungeneralizable Examples [70.76487163068109]
学習不能なデータを作成するための現在のアプローチには、小さくて特殊なノイズが組み込まれている。
学習不能データの概念を条件付きデータ学習に拡張し、textbfUntextbf Generalizable textbfExamples (UGEs)を導入する。
UGEは認証されたユーザに対して学習性を示しながら、潜在的なハッカーに対する非学習性を維持している。
論文 参考訳(メタデータ) (2024-04-22T09:29:14Z) - InfoMatch: Entropy Neural Estimation for Semi-Supervised Image Classification [2.878018421751116]
我々は、未ラベル標本のポテンシャルを利用するために、情報エントロピーニューラル推定を用いる。
対照的な学習にインスパイアされたエントロピーは、相互情報に対する下位境界を最大化することによって推定される。
広範囲な実験において,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-17T02:29:44Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - InteL-VAEs: Adding Inductive Biases to Variational Auto-Encoders via
Intermediary Latents [60.785317191131284]
本稿では,潜伏変数の中間集合を用いて,制御可能なバイアスでVAEを学習するための簡易かつ効果的な手法を提案する。
特に、学習した表現に対して、スパーシリティやクラスタリングといった望ましいプロパティを課すことができます。
これにより、InteL-VAEはより優れた生成モデルと表現の両方を学ぶことができる。
論文 参考訳(メタデータ) (2021-06-25T16:34:05Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
本稿では,シーケンスデータの有用な表現が潜在空間における単純な構造を示すべきという直感に基づく,シーケンスデータの自己教師型表現学習法を提案する。
我々は,過去と将来のウィンドウ間の相互情報である潜在特徴系列の予測情報を最大化することにより,この潜時構造を奨励する。
提案手法は,ノイズの多い動的システムの潜時空間を復元し,タスク予測のための予測特徴を抽出し,エンコーダを大量の未ラベルデータで事前訓練する場合に音声認識を改善する。
論文 参考訳(メタデータ) (2020-10-07T03:34:01Z) - Differentially Private Representation for NLP: Formal Guarantee and An
Empirical Study on Privacy and Fairness [38.90014773292902]
深層モデルで学習した隠れ表現が、入力のプライベート情報を符号化できることが示されている。
テキストから抽出した表現のプライバシを保護するために,DPNR(differially Private Neural Representation)を提案する。
論文 参考訳(メタデータ) (2020-10-03T05:58:32Z) - Stylized Adversarial Defense [105.88250594033053]
逆行訓練は摂動パターンを生成し、モデルを堅牢化するためのトレーニングセットにそれらを含む。
我々は、より強力な敵を作るために、機能空間から追加情報を活用することを提案する。
我々の対人訓練アプローチは、最先端の防御と比べて強い堅牢性を示している。
論文 参考訳(メタデータ) (2020-07-29T08:38:10Z) - Differentially private cross-silo federated learning [16.38610531397378]
厳密なプライバシは、分散機械学習において最重要事項である。
本稿では,いわゆるクロスサイロ・フェデレーション・ラーニング・セッティングにおいて,加算準同型セキュア和プロトコルと差分プライバシーを併用する。
提案手法により,非分散設定に匹敵する予測精度が得られることを示す。
論文 参考訳(メタデータ) (2020-07-10T18:15:10Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。